Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Space Sci Rev ; 220(3): 31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585189

RESUMO

This work reviews possible signatures and potential detectability of present-day volcanically emitted material in the atmosphere of Venus. We first discuss the expected composition of volcanic gases at present time, addressing how this is related to mantle composition and atmospheric pressure. Sulfur dioxide, often used as a marker of volcanic activity in Earth's atmosphere, has been observed since late 1970s to exhibit variability at the Venus' cloud tops at time scales from hours to decades; however, this variability may be associated with solely atmospheric processes. Water vapor is identified as a particularly valuable tracer for volcanic plumes because it can be mapped from orbit at three different tropospheric altitude ranges, and because of its apparent low background variability. We note that volcanic gas plumes could be either enhanced or depleted in water vapor compared to the background atmosphere, depending on magmatic volatile composition. Non-gaseous components of volcanic plumes, such as ash grains and/or cloud aerosol particles, are another investigation target of orbital and in situ measurements. We discuss expectations of in situ and remote measurements of volcanic plumes in the atmosphere with particular focus on the upcoming DAVINCI, EnVision and VERITAS missions, as well as possible future missions.

2.
Sci Adv ; 7(7)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33568485

RESUMO

A major quest in Mars' exploration has been the hunt for atmospheric gases, potentially unveiling ongoing activity of geophysical or biological origin. Here, we report the first detection of a halogen gas, HCl, which could, in theory, originate from contemporary volcanic degassing or chlorine released from gas-solid reactions. Our detections made at ~3.2 to 3.8 µm with the Atmospheric Chemistry Suite and confirmed with Nadir and Occultation for Mars Discovery instruments onboard the ExoMars Trace Gas Orbiter, reveal widely distributed HCl in the 1- to 4-ppbv range, 20 times greater than previously reported upper limits. HCl increased during the 2018 global dust storm and declined soon after its end, pointing to the exchange between the dust and the atmosphere. Understanding the origin and variability of HCl shall constitute a major advance in our appraisal of martian geo- and photochemistry.

3.
Science ; 367(6475): 297-300, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31919130

RESUMO

The loss of water from Mars to space is thought to result from the transport of water to the upper atmosphere, where it is dissociated to hydrogen and escapes the planet. Recent observations have suggested large, rapid seasonal intrusions of water into the upper atmosphere, boosting the hydrogen abundance. We use the Atmospheric Chemistry Suite on the ExoMars Trace Gas Orbiter to characterize the water distribution by altitude. Water profiles during the 2018-2019 southern spring and summer stormy seasons show that high-altitude water is preferentially supplied close to perihelion, and supersaturation occurs even when clouds are present. This implies that the potential for water to escape from Mars is higher than previously thought.

4.
Nature ; 568(7753): 517-520, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971829

RESUMO

The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today1. A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations2-5. These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere6,7, which-given methane's lifetime of several centuries-predicts an even, well mixed distribution of methane1,6,8. Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections2,4. We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater4 would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally.

5.
Nature ; 568(7753): 521-525, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971830

RESUMO

Global dust storms on Mars are rare1,2 but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere3, primarily owing to solar heating of the dust3. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars4. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes5,6, as well as a decrease in the water column at low latitudes7,8. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H2O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals3. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere.

8.
Appl Opt ; 57(10): C103-C119, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714213

RESUMO

Spectrometers employing acousto-optic tunable filters (AOTFs) rapidly gain popularity in space, and in particular on interplanetary missions. They allow for reducing volume, mass, and complexity of the instrumentation. To date, space operations of 11 AOTF spectrometers are reported in the literature. They were used for analyzing ocean color, greenhouse gases, atmospheres of Mars and Venus, and for lunar mineralogy. More instruments for the Moon, Mars, and asteroid mineralogy are in flight, awaiting launch, or in the state of advanced development. The AOTFs are used in point (pencil-beam) spectrometers for selecting echelle diffraction orders, or in hyper-spectral imagers and microscopes. We review the AOTF-employing devices flown in space or ready to set off. The paper considers basic principles of the AOTF and science applications of the AOTF spectrometers, and describes developed instruments in some detail. We also address some advanced developments for future missions and plans. In addition, we discuss lessons learned during instrument design, build, calibration, and exploitation, and advantages and limitations in implementing the AOTF-based systems in space instrumentation.

9.
Opt Express ; 25(21): 25980-25991, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041260

RESUMO

Spectral imaging in the near infrared is a promising method for mineralogy analysis, in particular well-suited for airless celestial objects or those with faint atmospheres. Additional information about structure and composition of minerals can be obtained using spectral polarimetry with high spatial resolution. We report design and performance of laboratory prototype for a compact near infrared acousto-optic imaging spectro-polarimeter, which may be implemented for remote or close-up analysis of planetary surfaces. The prototype features telecentric optics, apochromatic design over the bandwidth of 0.8-1.75 µm, and simultaneous imaging of two orthogonal linear polarizations of the same scene with a single FPA detector. When validating the scheme, reflectance spectra of several minerals were measured with the spectral resolution of 100 cm-1 (10 nm passband at 1 µm). When imaging samples, the spatial resolution of 0.6 mm at the target distance of one meter was reached. It corresponds to 100 by 100 diffraction-limited elements resolved at the focal plane array (FPA) for each of the two light polarizations. A similar prototype is also being designed for the spectral range from 1.7 to 3.5 µm. This type of the spectro-polarimeter is considered as a potential reconnaissance and analysis tool for future planetary or moon landers and rovers.

10.
Astrobiology ; 17(6-7): 595-611, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28731819

RESUMO

The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instrument's planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples collected by the drill. A status of the current development and planned science validation activities is also given. Key Words: Mars-Biosignatures-Planetary Instrumentation. Astrobiology 17, 595-611.

11.
Astrobiology ; 17(6-7): 542-564, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28731817

RESUMO

ISEM (Infrared Spectrometer for ExoMars) is a pencil-beam infrared spectrometer that will measure reflected solar radiation in the near infrared range for context assessment of the surface mineralogy in the vicinity of the ExoMars rover. The instrument will be accommodated on the mast of the rover and will be operated together with the panoramic camera (PanCam), high-resolution camera (HRC). ISEM will study the mineralogical and petrographic composition of the martian surface in the vicinity of the rover, and in combination with the other remote sensing instruments, it will aid in the selection of potential targets for close-up investigations and drilling sites. Of particular scientific interest are water-bearing minerals, such as phyllosilicates, sulfates, carbonates, and minerals indicative of astrobiological potential, such as borates, nitrates, and ammonium-bearing minerals. The instrument has an ∼1° field of view and covers the spectral range between 1.15 and 3.30 µm with a spectral resolution varying from 3.3 nm at 1.15 µm to 28 nm at 3.30 µm. The ISEM optical head is mounted on the mast, and its electronics box is located inside the rover's body. The spectrometer uses an acousto-optic tunable filter and a Peltier-cooled InAs detector. The mass of ISEM is 1.74 kg, including the electronics and harness. The science objectives of the experiment, the instrument design, and operational scenarios are described. Key Words: ExoMars-ISEM-Mars-Surface-Mineralogy-Spectroscopy-AOTF-Infrared. Astrobiology 17, 542-564.

12.
Astrobiology ; 17(6-7): 471-510, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067287

RESUMO

The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures-ExoMars-Landing sites-Mars rover-Search for life. Astrobiology 17, 471-510.

13.
Appl Opt ; 54(11): 3315-22, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25967319

RESUMO

A new compact satellite spectrometer dedicated to monitoring terrestrial atmospheric ozone (ozonometer) is in preparation for the Russian Geophysics Program. Four instruments at four satellites (Ionosphere) are intended to monitor the total ozone content by measuring spectra of scattered solar radiation in nadir. The spectrometer is based on the Rowland scheme with a concave holographic diffraction grating. It covers the near UV and visible range of the spectrum, 300-500 nm, with a spectral resolution of ∼0.3 nm. At present, a qualification model has been manufactured and tested. We introduce the description of the instrument and the results of laboratory and ground-based atmospheric calibrations. The ozone amount retrieved from atmospheric measurements using the differential optical absorption spectroscopy (DOAS) method is in good agreement with that measured by the collocated Brewer spectrophotometer and ozone monitoring instrument on board the Aura satellite.

14.
Opt Express ; 21(15): 18354-60, 2013 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-23938707

RESUMO

Acousto-optic tunable filter (AOTF) spectrometers are being criticized for spectral leakage, distant side lobes of their spectral response function (SRF), or the stray light. SPICAM-IR is the AOTF spectrometer in the range of 1000-1700 nm with a resolving power of 1800-2200 operating on the Mars Express interplanetary probe. It is primarily dedicated to measurements of water vapor in the Martian atmosphere. SPICAM H(2)O retrievals are generally lower than simultaneous measurements with other instruments, the stray light suggested as a likely explanation. We report the results of laboratory measurements of water vapor in quantity characteristic for the Mars atmosphere (2-15 precipitable microns) with the Flight Spare model of SPICAM-IR. We simulated the measured spectra with HITRAN-based synthetic model, varying the water abundance, and the level of the stray light, and compared the results to the known amount of water in the cell. The retrieved level of the stray light, assumed uniformly spread over the spectral range, is below 1-1.3·10(-4). The stray may be responsible for the underestimation of water abundance of up to 8%, or 0.6 pr. µm. The account for the stray light removes the bias completely; the overall accuracy to measure water vapor is ~0.2 pr. µm. We demonstrate that the AOTF spectrometer dependably measures the water abundance and can be employed as an atmospheric spectrometer.


Assuntos
Artefatos , Atmosfera/análise , Atmosfera/química , Marte , Tecnologia de Sensoriamento Remoto/instrumentação , Astronave/instrumentação , Análise Espectral/instrumentação , Radiação de Fundo , Desenho de Equipamento , Análise de Falha de Equipamento , Luz
15.
Appl Opt ; 52(5): 1054-65, 2013 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-23400068

RESUMO

The echelle spectrometer TIMM-2 is the instrument developed for the unsuccessful Russian mission Phobos-Grunt. The instrument was dedicated to solar occultation studies of the Martian atmosphere by measuring the amount of methane, by sensitive measuring of other minor constituents, and by profiling the D/H ratio and the aerosol structure. The spectral range of the instrument is 2300-4100 nm, the spectral resolving power λ/Δλ exceeds 25,000, and the field of view is 1.5×21 arc min. The spectra are measured in narrow spectral intervals, corresponding to discreet diffraction orders. One measurement cycle includes several spectral intervals. To study the vertical profiles of aerosol, the instrument incorporates four photometers in the UV to near-IR spectral range. The mass of the instrument is 2800 g, and its power consumption is 12 W. One complete flight model remains available after the Phobos-Grunt launch. We discuss the science objectives of the occultation experiment for the case of Mars, the implementation of the instrument, and the results of ground calibrations.

16.
Opt Lett ; 36(11): 1972-4, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21633419

RESUMO

To suppress starlight for direct exoplanet observation, we propose a common-path achromatic rotational-shearing coronagraph (CP-ARC), which is an interferocoronagraph with an angular-adjustable field rotator. The CP-ARC aims to maintain unwanted detection of stellar light, which can be suppressed incompletely by interference because of the finite diameter of the star. Compared to the previous interferocoronagraph, which had a nonadjustable 180° field rotation, the proposed CP-ARC can improve the coronagraphic contrast by several orders if the CP-ARC is combined with medium or large telescopes where the companion-star separation is optically resolved by more than a few Airy radii. The CP-ARC is made robust against mechanical disturbances due to the common-path interferometer principle.

17.
Appl Opt ; 47(13): 2252-65, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18449289

RESUMO

Solar occultation in the infrared, part of the Spectoscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV) instrument onboard Venus Express, combines an echelle grating spectrometer with an acousto-optic tunable filter (AOTF). It performs solar occultation measurements in the IR region at high spectral resolution. The wavelength range probed allows a detailed chemical inventory of Venus's atmosphere above the cloud layer, highlighting the vertical distribution of gases. A general description of the instrument and its in-flight performance is given. Different calibrations and data corrections are investigated, in particular the dark current and thermal background, the nonlinearity and pixel-to-pixel variability of the detector, the sensitivity of the instrument, the AOTF properties, and the spectral calibration and resolution.

18.
Nature ; 450(7170): 646-9, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18046397

RESUMO

Venus has thick clouds of H2SO4 aerosol particles extending from altitudes of 40 to 60 km. The 60-100 km region (the mesosphere) is a transition region between the 4 day retrograde superrotation at the top of the thick clouds and the solar-antisolar circulation in the thermosphere (above 100 km), which has upwelling over the subsolar point and transport to the nightside. The mesosphere has a light haze of variable optical thickness, with CO, SO2, HCl, HF, H2O and HDO as the most important minor gaseous constituents, but the vertical distribution of the haze and molecules is poorly known because previous descent probes began their measurements at or below 60 km. Here we report the detection of an extensive layer of warm air at altitudes 90-120 km on the night side that we interpret as the result of adiabatic heating during air subsidence. Such a strong temperature inversion was not expected, because the night side of Venus was otherwise so cold that it was named the 'cryosphere' above 100 km. We also measured the mesospheric distributions of HF, HCl, H2O and HDO. HCl is less abundant than reported 40 years ago. HDO/H2O is enhanced by a factor of approximately 2.5 with respect to the lower atmosphere, and there is a general depletion of H2O around 80-90 km for which we have no explanation.

19.
Appl Opt ; 45(21): 5191-206, 2006 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16826258

RESUMO

A new compact spaceborne high-resolution spectrometer developed for the European Space Agency's Venus Express spacecraft is described. It operates in the IR wavelength range of 2.2 to 4.3 microm and measures absorption spectra of minor constituents in the Venusian atmosphere. It uses a novel echelle grating with a groove density of 4 lines/mm in a Littrow configuration in combination with an IR acousto-optic tunable filter for order sorting and an actively cooled HgCdTe focal plane array of 256 by 320 pixels. It is designed to obtain an instrument line profile of 0.2 cm(-1). First results on optical and spectral properties are reported.

20.
Science ; 312(5772): 400-4, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16627738

RESUMO

Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the "phyllocian" era) are found in the oldest terrains; sulfates were formed in a second era (the "theiikian" era) in an acidic environment. Beginning about 3.5 billion years ago, the last era (the "siderikian") is dominated by the formation of anhydrous ferric oxides in a slow superficial weathering, without liquid water playing a major role across the planet.


Assuntos
Marte , Minerais , Água , Silicatos de Alumínio , Atmosfera , Dióxido de Carbono , Argila , Meio Ambiente Extraterreno , Compostos Férricos , Silicatos , Sulfatos , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA