Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Sci ; 13(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37190537

RESUMO

The understanding of tinnitus has always been elusive and is largely prevented by its intrinsic heterogeneity. To address this issue, scientific research has aimed at defining stable and easily identifiable subphenotypes of tinnitus. This would allow better disentangling the multiple underlying pathophysiological mechanisms of tinnitus. In this study, three-dimensionality reduction techniques and two clustering methods were benchmarked on a database of 2772 tinnitus patients in order to obtain a reliable segmentation of subphenotypes. In this database, tinnitus patients' endotypes (i.e., parts of a population with a condition with distinct underlying mechanisms) are reported when diagnosed by an ENT expert in tinnitus management. This partial labeling of the dataset enabled the design of an original semi-supervised framework. The objective was to perform a benchmark of different clustering methods to get as close as possible to the initial ENT expert endotypes. To do so, two metrics were used: a primary one, the quality of the separation of the endotypes already identified in the database, as well as a secondary one, the stability of the obtained clusterings. The relevance of the results was finally reviewed by two ENT experts in tinnitus management. A 20-cluster clustering was selected as the best-performing, the most-clinically relevant, and the most-stable through bootstrapping. This clustering used a T-SNE method as the dimensionality reduction technique and a k-means algorithm as the clustering method. The characteristics of this clustering are presented in this article.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37107791

RESUMO

(1) Background: Poor sleep and fragmented sleep are associated with several chronic conditions. Tinnitus is an auditory symptom that often negatively combines with poor sleep and has been associated with sleep impairment and sleep apnea. The relationship between tinnitus psychoacoustic characteristics and sleep is still poorly explored, notably for a particular subgroup of patients, for whom the perceived loudness of their tinnitus is highly modulated by sleep. (2) Methods: For this observational prospective study, 30 subjects with tinnitus were recruited, including 15 "sleep intermittent tinnitus" subjects, who had reported significant modulations of tinnitus loudness related to night sleep and naps, and a control group of 15 subjects displaying constant non-sleep-modulated tinnitus. The control group had matching age, gender, self-reported hearing loss grade and tinnitus impact on quality of life with the study group. All patients underwent a polysomnography (PSG) assessment for one complete night and then were asked to fill in a case report form, as well as a report of tinnitus loudness before and after the PSG. (3) Results: "Sleep Intermittent tinnitus" subjects had less Stage 3 sleep (p < 0.01), less Rapid-Eye Movement (REM) Sleep (p < 0.05) and more Stage 2 sleep (p < 0.05) in proportion and duration than subjects from the control group. In addition, in the "sleep Intermittent tinnitus" sample, a correlation was found between REM sleep duration and tinnitus overnight modulation (p < 0.05), as well as tinnitus impact on quality of life (p < 0.05). These correlations were not present in the control group. (4) Conclusions: This study suggests that among the tinnitus population, patients displaying sleep-modulated tinnitus have deteriorated sleep quality. Furthermore, REM sleep characteristics may play a role in overnight tinnitus modulation. Potential pathophysiological explanations accounting for this observation are hypothesized and discussed.


Assuntos
Sono REM , Zumbido , Humanos , Sono REM/fisiologia , Qualidade de Vida , Zumbido/etiologia , Estudos Prospectivos , Sono
3.
Artigo em Inglês | MEDLINE | ID: mdl-36908334

RESUMO

The Eighth International Brain-Computer Interface (BCI) Meeting was held June 7-9th, 2021 in a virtual format. The conference continued the BCI Meeting series' interactive nature with 21 workshops covering topics in BCI (also called brain-machine interface) research. As in the past, workshops covered the breadth of topics in BCI. Some workshops provided detailed examinations of specific methods, hardware, or processes. Others focused on specific BCI applications or user groups. Several workshops continued consensus building efforts designed to create BCI standards and increase the ease of comparisons between studies and the potential for meta-analysis and large multi-site clinical trials. Ethical and translational considerations were both the primary topic for some workshops or an important secondary consideration for others. The range of BCI applications continues to expand, with more workshops focusing on approaches that can extend beyond the needs of those with physical impairments. This paper summarizes each workshop, provides background information and references for further study, presents an overview of the discussion topics, and describes the conclusion, challenges, or initiatives that resulted from the interactions and discussion at the workshop.

4.
J Neurosci Methods ; 267: 74-88, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27090947

RESUMO

BACKGROUND: Already used at the incept of research on event-related potentials (ERP) over half a century ago, the arithmetic mean is still the benchmark for ERP estimation. Such estimation, however, requires a large number of sweeps and/or a careful rejection of artifacts affecting the electroencephalographic recording. NEW METHOD: In this article we propose a method for estimating ERPs as they are naturally contaminated by biological and instrumental artifacts. The proposed estimator makes use of multivariate spatio-temporal filtering to increase the signal-to-noise ratio. This approach integrates a number of relevant advances in ERP data analysis, such as single-sweep adaptive estimation of amplitude and latency and the use of multivariate regression to account for ERP overlapping in time. RESULTS: We illustrate the effectiveness of the proposed estimator analyzing a dataset comprising 24 subjects involving a visual odd-ball paradigm, without performing any artifact rejection. COMPARISON WITH EXISTING METHOD(S): As compared to the arithmetic average, a lower number of sweeps is needed. Furthermore, artifact rejection can be performed roughly using permissive automatic procedures. CONCLUSION: The proposed ensemble average estimator yields a reference companion to the arithmetic ensemble average estimation, suitable both in clinical and research settings. The method can be applied equally to event related fields (ERF) recorded by means of magnetoencephalography. In this article we describe all necessary methodological details to promote testing and comparison of this proposed method by peers. Furthermore, we release a MATLAB toolbox, a plug-in for the EEGLAB software suite and a stand-alone executable application.


Assuntos
Algoritmos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Artefatos , Interfaces Cérebro-Computador , Humanos , Análise Multivariada , Testes Neuropsicológicos , Fatores de Tempo , Percepção Visual/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-25570185

RESUMO

The goal of the CLINATEC® Brain Computer Interface (BCI) Project is to improve tetraplegic subjects' quality of life by allowing them to interact with their environment through the control of effectors, such as an exoskeleton. The BCI platform is based on a wireless 64-channel ElectroCorticoGram (ECoG) recording implant WIMAGINE®, designed for long-term clinical application, and a BCI software environment associated to a 4-limb exoskeleton EMY (Enhancing MobilitY). Innovative ECoG signal decoding algorithms will allow the control of the exoskeleton by the subject's brain activity. Currently, the whole BCI platform was tested in real-time in preclinical experiments carried out in nonhuman primates. In these experiments, the exoskeleton arm was controlled by means of the decoded neuronal activity.


Assuntos
Interfaces Cérebro-Computador , Eletrocorticografia , Algoritmos , Animais , Eletrodos Implantados , Eletroencefalografia , Exoesqueleto Energizado , Macaca mulatta , Qualidade de Vida , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA