Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
2.
Mol Ther Nucleic Acids ; 34: 102064, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38028198

RESUMO

Genetic variation around the LRRK2 gene affects risk for both familial and sporadic Parkinson's disease (PD). LRRK2 levels have become an appealing target for potential PD therapeutics with LRRK2 antisense oligonucleotides (ASOs) now moving toward clinical trials. However, LRRK2 has been suggested to play a fundamental role in peripheral immunity, and it is currently unknown if targeting increased LRRK2 levels in peripheral immune cells will be beneficial or deleterious. Here it was observed that G2019S macrophages exhibited increased stimulation-dependent lysosomal tubule formation (LTF) and MHC-II trafficking from the perinuclear lysosome to the plasma membrane in an mTOR-dependent manner with concomitant increases in pro-inflammatory cytokine release. Both ASO-mediated knockdown of mutant Lrrk2 and LRRK2 kinase inhibition ameliorated this phenotype and decreased these immune responses in control cells. Given the critical role of antigen presentation, lysosomal function, and cytokine release in macrophages, it is likely LRRK2-targeting therapies with systemic activity may have therapeutic value with regard to mutant LRRK2, but deleterious effects on the peripheral immune system, such as altered pathogen control in these cells, should be considered when reducing levels of non-mutant LRRK2.

3.
Nat Commun ; 14(1): 6547, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848409

RESUMO

PACS1 syndrome is a neurodevelopmental disorder (NDD) caused by a recurrent de novo missense mutation in PACS1 (p.Arg203Trp (PACS1R203W)). The mechanism by which PACS1R203W causes PACS1 syndrome is unknown, and no curative treatment is available. Here, we use patient cells and PACS1 syndrome mice to show that PACS1 (or PACS-1) is an HDAC6 effector and that the R203W substitution increases the PACS1/HDAC6 interaction, aberrantly potentiating deacetylase activity. Consequently, PACS1R203W reduces acetylation of α-tubulin and cortactin, causing the Golgi ribbon in hippocampal neurons and patient-derived neural progenitor cells (NPCs) to fragment and overpopulate dendrites, increasing their arborization. The dendrites, however, are beset with varicosities, diminished spine density, and fewer functional synapses, characteristic of NDDs. Treatment of PACS1 syndrome mice or patient NPCs with PACS1- or HDAC6-targeting antisense oligonucleotides, or HDAC6 inhibitors, restores neuronal structure and synaptic transmission in prefrontal cortex, suggesting that targeting PACS1R203W/HDAC6 may be an effective therapy for PACS1 syndrome.


Assuntos
Histona Desacetilases , Tubulina (Proteína) , Humanos , Camundongos , Animais , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Tubulina (Proteína)/metabolismo , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Síndrome , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Proteínas de Transporte Vesicular/genética
4.
JAMA Neurol ; 80(12): 1344-1352, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902726

RESUMO

Importance: Accumulation of hyperphosphorylated, tangled microtubule-associated protein tau (MAPT) is a pathological hallmark of Alzheimer disease (AD) associated with disease progression and cognitive decline. Objective: To evaluate the effect of tau synthesis reduction on tau biomarkers in patients with mild AD. Design, Setting, and Participants: This randomized clinical trial was a double-blind, placebo-controlled 36-week multiple-ascending dose (MAD) phase 1b trial (October 2017 to September 2020), followed by a 64- or 71-week open-label long-term extension (LTE) (October 2019 to May 2022). After being assessed for eligibility at 12 sites in Canada and Europe, participants with mild AD and confirmed amyloid pathology were randomized 3:1 (BIIB080:placebo) in 4 dose cohorts. Intervention: Intrathecal administration of BIIB080, a MAPT-targeting antisense oligonucleotide, or placebo. Active dose arms included 10 mg every 4 weeks, 30 mg every 4 weeks, 60 mg every 4 weeks, and 115 mg every 12 weeks during the MAD period and 60 mg every 12 weeks or 115 mg every 12 weeks during the LTE. Main Outcome and Measures: The original primary end point was safety. Additionally, BIIB080, total tau (t-tau), and phosphorylated tau 181 (p-tau181) cerebrospinal fluid (CSF) concentrations were evaluated. Tau positron emission tomography (PET) was collected in a substudy, and standard uptake value ratios (SUVRs) were calculated in a priori-defined composite regions of interest. Results: Of 102 participants assessed for eligibility, 46 participants with mild AD were enrolled; 23 (50%) were female, and mean (SD) age was 65.8 (5.70) years. BIIB080 was generally well tolerated and was associated with a dose-dependent reduction in CSF t-tau and p-tau181 in the MAD period (56% reduction; 95% CI, 50% to 62%; and 51% reduction; 95% CI, 38% to 63%, of CSF t-tau in the 2 higher-dose cohorts) that continued and/or was maintained through quarterly dosing in the LTE. Tau PET demonstrated reduced accumulation vs placebo at week 25 (n = 13). At week 100, tau PET showed a reduction from baseline across all regions assessed (n = 12), with the largest reductions from baseline observed in the temporal composite (-0.71 SUVR; 95% CI, -1.40 to -0.02). A moderate correlation was observed between model-predicted cumulative CSF drug exposure and tau PET change. Conclusions and Relevance: In this randomized clinical trial, BIIB080 reduced tau biomarkers, including CSF t-tau, CSF p-tau181, and tau PET, which is associated with cognitive decline, in participants with mild AD. Effects of BIIB080 on biomarkers and clinical outcomes are being further evaluated in a phase 2 trial. Trial Registration: ClinicalTrials.gov Identifier: NCT03186989.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Método Duplo-Cego , Peptídeos beta-Amiloides/líquido cefalorraquidiano
5.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503274

RESUMO

Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). LRRK2 levels have become an appealing target for potential PD-therapeutics with LRRK2 antisense oligonucleotides (ASOs) now in clinical trials. However, LRRK2 has been suggested to play a fundamental role in peripheral immunity, and it is currently unknown if targeting increased LRRK2 levels in peripheral immune cells will be beneficial or deleterious. Furthermore, the precise role of LRRK2 in immune cells is currently unknown, although it has been suggested that LRRK2-mediated lysosomal function may be crucial to immune responses. Here, it was observed that G2019S macrophages exhibited increased stimulation-dependent lysosomal tubule formation (LTF) and MHC-II trafficking from the perinuclear lysosome to the plasma membrane in an mTOR dependent manner with concomitant increases in pro-inflammatory cytokine release. Both ASO-mediated knock down of mutant Lrrk 2 and LRRK2 kinase inhibition ameliorated this phenotype and decreased these immune responses in control cells. Given the critical role of antigen presentation, lysosomal function, and cytokine release in macrophages, it is likely LRRK2-targetting therapies may have therapeutic value with regards to mutant LRRK2 but deleterious effects on the peripheral immune system, such as altered pathogen control and infection resolution.

6.
Nucleic Acids Res ; 51(14): 7109-7124, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37188501

RESUMO

Antisense oligonucleotides (ASOs) dosed into cerebrospinal fluid (CSF) distribute broadly throughout the central nervous system (CNS). By modulating RNA, they hold the promise of targeting root molecular causes of disease and hold potential to treat myriad CNS disorders. Realization of this potential requires that ASOs must be active in the disease-relevant cells, and ideally, that monitorable biomarkers also reflect ASO activity in these cells. The biodistribution and activity of such centrally delivered ASOs have been deeply characterized in rodent and non-human primate (NHP) models, but usually only in bulk tissue, limiting our understanding of the distribution of ASO activity across individual cells and across diverse CNS cell types. Moreover, in human clinical trials, target engagement is usually monitorable only in a single compartment, CSF. We sought a deeper understanding of how individual cells and cell types contribute to bulk tissue signal in the CNS, and how these are linked to CSF biomarker outcomes. We employed single nucleus transcriptomics on tissue from mice treated with RNase H1 ASOs against Prnp and Malat1 and NHPs treated with an ASO against PRNP. Pharmacologic activity was observed in every cell type, though sometimes with substantial differences in magnitude. Single cell RNA count distributions implied target RNA suppression in every single sequenced cell, rather than intense knockdown in only some cells. Duration of action up to 12 weeks post-dose differed across cell types, being shorter in microglia than in neurons. Suppression in neurons was generally similar to, or more robust than, the bulk tissue. In macaques, PrP in CSF was lowered 40% in conjunction with PRNP knockdown across all cell types including neurons, arguing that a CSF biomarker readout is likely to reflect ASO pharmacodynamic effect in disease-relevant cells in a neuronal disorder. Our results provide a reference dataset for ASO activity distribution in the CNS and establish single nucleus sequencing as a method for evaluating cell type specificity of oligonucleotide therapeutics and other modalities.


Antisense oligonucleotide (ASO) drugs are a type of chemically modified DNA that can be injected into cerebrospinal fluid in order to enter brain cells and reduce the amount of RNA from a specific gene. The brain is a complex mixture of hundreds of billions of cells. When an ASO lowers a target gene's RNA by 50%, is that a 50% reduction in 100% of cells, or a 100% reduction in 50% of cells? Are the many different cell types of the brain affected equally? This new study uses single cell RNA sequencing to answer these questions, finding that ASOs are broadly active across cell types and individual cells, and linking reduction of target protein in cerebrospinal fluid to disease-relevant cells.


Assuntos
Encéfalo , Oligonucleotídeos Antissenso , Animais , Camundongos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Oligonucleotídeos/metabolismo , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/análise , RNA/metabolismo , Distribuição Tecidual , Fatores de Transcrição/metabolismo , Líquido Cefalorraquidiano/química , Doenças do Sistema Nervoso Central/terapia
7.
Nat Med ; 29(6): 1437-1447, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37095250

RESUMO

Tau plays a key role in Alzheimer's disease (AD) pathophysiology, and accumulating evidence suggests that lowering tau may reduce this pathology. We sought to inhibit MAPT expression with a tau-targeting antisense oligonucleotide (MAPTRx) and reduce tau levels in patients with mild AD. A randomized, double-blind, placebo-controlled, multiple-ascending dose phase 1b trial evaluated the safety, pharmacokinetics and target engagement of MAPTRx. Four ascending dose cohorts were enrolled sequentially and randomized 3:1 to intrathecal bolus administrations of MAPTRx or placebo every 4 or 12 weeks during the 13-week treatment period, followed by a 23 week post-treatment period. The primary endpoint was safety. The secondary endpoint was MAPTRx pharmacokinetics in cerebrospinal fluid (CSF). The prespecified key exploratory outcome was CSF total-tau protein concentration. Forty-six patients enrolled in the trial, of whom 34 were randomized to MAPTRx and 12 to placebo. Adverse events were reported in 94% of MAPTRx-treated patients and 75% of placebo-treated patients; all were mild or moderate. No serious adverse events were reported in MAPTRx-treated patients. Dose-dependent reduction in the CSF total-tau concentration was observed with greater than 50% mean reduction from baseline at 24 weeks post-last dose in the 60 mg (four doses) and 115 mg (two doses) MAPTRx groups. Clinicaltrials.gov registration number: NCT03186989 .


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/líquido cefalorraquidiano , Oligonucleotídeos Antissenso/uso terapêutico , Resultado do Tratamento , Método Duplo-Cego
8.
Res Sq ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747781

RESUMO

Neurodevelopmental disorders (NDDs) are frequently associated with dendritic abnormalities in pyramidal neurons that affect arbor complexity, spine density, and synaptic communication 1,2. The underlying genetic causes are often complex, obscuring the molecular pathways that drive these disorders 3. Next-generation sequencing has identified recurrent de novo missense mutations in a handful of genes associated with NDDs, offering a unique opportunity to decipher the molecular pathways 4. One such gene is PACS1, which encodes the multi-functional trafficking protein PACS1 (or PACS-1); a single recurrent de novo missense mutation, c607C>T (PACS1R203W), causes developmental delay and intellectual disability (ID) 5,6. The processes by which PACS1R203W causes PACS1 syndrome are unknown, and there is no curative treatment. We show that PACS1R203W increases the interaction between PACS1 and the α-tubulin deacetylase HDAC6, elevating enzyme activity and appropriating control of its posttranscriptional regulation. Consequently, PACS1R203W reduces acetylation of α-tubulin and cortactin, causing the Golgi to fragment and enter developing neurites, leading to increased dendrite arborization. The dendrites, however, are beset with diminished spine density and fewer functional synapses, characteristic of ID pathology. Treatment of PACS1 syndrome mice with PACS1- or HDAC6-targeting antisense oligonucleotides restores neuronal structure and synaptic transmission, suggesting PACS1R203W/HDAC6 may be targeted for treating PACS1 syndrome neuropathology.

9.
bioRxiv ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824749

RESUMO

Antisense oligonucleotides (ASOs) dosed into cerebrospinal fluid (CSF) distribute broadly throughout the brain and hold the promise of treating myriad brain diseases by modulating RNA. CNS tissue is not routinely biopsied in living individuals, leading to reliance on CSF biomarkers to inform on drug target engagement. Animal models can link CSF biomarkers to brain parenchyma, but our understanding of how individual cells contribute to bulk tissue signal is limited. Here we employed single nucleus transcriptomics on tissue from mice treated with RNase H1 ASOs against Prnp and Malat1 and macaques treated with an ASO against PRNP . Activity was observed in every cell type, though sometimes with substantial differences in magnitude. Single cell RNA count distributions implied target suppression in every single sequenced cell, rather than intense knockdown in only some cells. Duration of action up to 12 weeks post-dose differed across cell types, being shorter in microglia than in neurons. Suppression in neurons was generally similar to, or more robust than, the bulk tissue. In macaques, PrP in CSF was lowered 40% in conjunction with PRNP knockdown across all cell types including neurons, arguing that a CSF biomarker readout is likely to reflect disease-relevant cells in a neuronal disorder.

10.
Brain ; 145(12): 4409-4424, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35793238

RESUMO

Huntington disease is caused by a CAG repeat expansion in exon 1 of the huntingtin gene (HTT) that is translated into a polyglutamine stretch in the huntingtin protein (HTT). We previously showed that HTT mRNA carrying an expanded CAG repeat was incompletely spliced to generate HTT1a, an exon 1 only transcript, which was translated to produce the highly aggregation-prone and pathogenic exon 1 HTT protein. This occurred in all knock-in mouse models of Huntington's disease and could be detected in patient cell lines and post-mortem brains. To extend these findings to a model system expressing human HTT, we took advantage of YAC128 mice that are transgenic for a yeast artificial chromosome carrying human HTT with an expanded CAG repeat. We discovered that the HTT1a transcript could be detected throughout the brains of YAC128 mice. We implemented RNAscope to visualize HTT transcripts at the single molecule level and found that full-length HTT and HTT1a were retained together in large nuclear RNA clusters, as well as being present as single transcripts in the cytoplasm. Homogeneous time-resolved fluorescence analysis demonstrated that the HTT1a transcript had been translated to produce the exon 1 HTT protein. The levels of exon 1 HTT in YAC128 mice, correlated with HTT aggregation, supportive of the hypothesis that exon 1 HTT initiates the aggregation process. Huntingtin-lowering strategies are a major focus of therapeutic development for Huntington's disease. These approaches often target full-length HTT alone and would not be expected to reduce pathogenic exon 1 HTT levels. We have established YAC128 mouse embryonic fibroblast lines and shown that, together with our QuantiGene multiplex assay, these provide an effective screening tool for agents that target HTT transcripts. The effects of current targeting strategies on nuclear RNA clusters are unknown, structures that may have a pathogenic role or alternatively could be protective by retaining HTT1a in the nucleus and preventing it from being translated. In light of recently halted antisense oligonucleotide trials, it is vital that agents targeting HTT1a are developed, and that the effects of HTT-lowering strategies on the subcellular levels of all HTT transcripts and their various HTT protein isoforms are understood.


Assuntos
Doença de Huntington , Humanos , Camundongos , Animais , Doença de Huntington/genética , Proteína Huntingtina/genética , RNA Mensageiro/metabolismo , Fibroblastos/metabolismo , RNA Nuclear , Modelos Animais de Doenças
11.
JCI Insight ; 7(6)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35133987

RESUMO

Prion protein (PrP) concentration controls the kinetics of prion replication and is a genetically and pharmacologically validated therapeutic target for prion disease. In order to evaluate PrP concentration as a pharmacodynamic biomarker and assess its contribution to known prion disease risk factors, we developed and validated a plate-based immunoassay reactive for PrP across 6 species of interest and applicable to brain and cerebrospinal fluid (CSF). PrP concentration varied dramatically across different brain regions in mice, cynomolgus macaques, and humans. PrP expression did not appear to contribute to the known risk factors of age, sex, or common PRNP genetic variants. CSF PrP was lowered in the presence of rare pathogenic PRNP variants, with heterozygous carriers of P102L displaying 55%, and D178N just 31%, of the CSF PrP concentration of mutation-negative controls. In rodents, pharmacologic reduction of brain Prnp RNA was reflected in brain parenchyma PrP and, in turn in CSF PrP, validating CSF as a sampling compartment for the effect of PrP-lowering therapy. Our findings support the use of CSF PrP as a pharmacodynamic biomarker for PrP-lowering drugs and suggest that relative reduction from individual baseline CSF PrP concentration may be an appropriate marker for target engagement.


Assuntos
Doenças Priônicas , Proteínas Priônicas , Príons , Animais , Biomarcadores/líquido cefalorraquidiano , Genótipo , Humanos , Camundongos , Doenças Priônicas/diagnóstico , Doenças Priônicas/tratamento farmacológico , Proteínas Priônicas/líquido cefalorraquidiano , Proteínas Priônicas/genética , Proteínas Priônicas/farmacologia , Príons/genética , Príons/metabolismo
12.
Brain ; 145(7): 2361-2377, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35084461

RESUMO

Longer glucan chains tend to precipitate. Glycogen, by far the largest mammalian glucan and the largest molecule in the cytosol with up to 55 000 glucoses, does not, due to a highly regularly branched spherical structure that allows it to be perfused with cytosol. Aberrant construction of glycogen leads it to precipitate, accumulate into polyglucosan bodies that resemble plant starch amylopectin and cause disease. This pathology, amylopectinosis, is caused by mutations in a series of single genes whose functions are under active study toward understanding the mechanisms of proper glycogen construction. Concurrently, we are characterizing the physicochemical particularities of glycogen and polyglucosans associated with each gene. These genes include GBE1, EPM2A and EPM2B, which respectively encode the glycogen branching enzyme, the glycogen phosphatase laforin and the laforin-interacting E3 ubiquitin ligase malin, for which an unequivocal function is not yet known. Mutations in GBE1 cause a motor neuron disease (adult polyglucosan body disease), and mutations in EPM2A or EPM2B a fatal progressive myoclonus epilepsy (Lafora disease). RBCK1 deficiency causes an amylopectinosis with fatal skeletal and cardiac myopathy (polyglucosan body myopathy 1, OMIM# 615895). RBCK1 is a component of the linear ubiquitin chain assembly complex, with unique functions including generating linear ubiquitin chains and ubiquitinating hydroxyl (versus canonical amine) residues, including of glycogen. In a mouse model we now show (i) that the amylopectinosis of RBCK1 deficiency, like in adult polyglucosan body disease and Lafora disease, affects the brain; (ii) that RBCK1 deficiency glycogen, like in adult polyglucosan body disease and Lafora disease, has overlong branches; (iii) that unlike adult polyglucosan body disease but like Lafora disease, RBCK1 deficiency glycogen is hyperphosphorylated; and finally (iv) that unlike laforin-deficient Lafora disease but like malin-deficient Lafora disease, RBCK1 deficiency's glycogen hyperphosphorylation is limited to precipitated polyglucosans. In summary, the fundamental glycogen pathology of RBCK1 deficiency recapitulates that of malin-deficient Lafora disease. Additionally, we uncover sex and genetic background effects in RBCK1 deficiency on organ- and brain-region specific amylopectinoses, and in the brain on consequent neuroinflammation and behavioural deficits. Finally, we exploit the portion of the basic glycogen pathology that is common to adult polyglucosan body disease, both forms of Lafora disease and RBCK1 deficiency, namely overlong branches, to show that a unified approach based on downregulating glycogen synthase, the enzyme that elongates glycogen branches, can rescue all four diseases.


Assuntos
Doença de Depósito de Glicogênio Tipo IV , Doença de Lafora , Ubiquitina-Proteína Ligases , Animais , Regulação para Baixo , Glucanos/metabolismo , Glicogênio/metabolismo , Doença de Depósito de Glicogênio , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Doença de Lafora/genética , Doença de Lafora/patologia , Camundongos , Epilepsias Mioclônicas Progressivas , Doenças do Sistema Nervoso , Proteínas Tirosina Fosfatases não Receptoras/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Brain ; 144(10): 2985-2993, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-33993268

RESUMO

Lafora disease is a fatal progressive myoclonus epilepsy. At root, it is due to constant acquisition of branches that are too long in a subgroup of glycogen molecules, leading them to precipitate and accumulate into Lafora bodies, which drive a neuroinflammatory response and neurodegeneration. As a potential therapy, we aimed to downregulate glycogen synthase, the enzyme responsible for glycogen branch elongation, in mouse models of the disease. We synthesized an antisense oligonucleotide (Gys1-ASO) that targets the mRNA of the brain-expressed glycogen synthase 1 gene (Gys1). We administered Gys1-ASO by intracerebroventricular injection and analysed the pathological hallmarks of Lafora disease, namely glycogen accumulation, Lafora body formation, and neuroinflammation. Gys1-ASO prevented Lafora body formation in young mice that had not yet formed them. In older mice that already exhibited Lafora bodies, Gys1-ASO inhibited further accumulation, markedly preventing large Lafora bodies characteristic of advanced disease. Inhibition of Lafora body formation was associated with prevention of astrogliosis and strong trends towards correction of dysregulated expression of disease immune and neuroinflammatory markers. Lafora disease manifests gradually in previously healthy teenagers. Our work provides proof of principle that an antisense oligonucleotide targeting the GYS1 mRNA could prevent, and halt progression of, this catastrophic epilepsy.


Assuntos
Glicogênio Sintase/administração & dosagem , Doença de Lafora/tratamento farmacológico , Doença de Lafora/patologia , Oligorribonucleotídeos Antissenso/administração & dosagem , Animais , Feminino , Injeções Intraventriculares , Doença de Lafora/genética , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética
16.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33682798

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disease with no approved disease-modifying therapies. Multiplications, mutations, and single nucleotide polymorphisms in the SNCA gene, encoding α-synuclein (aSyn) protein, either cause or increase risk for PD. Intracellular accumulations of aSyn are pathological hallmarks of PD. Taken together, reduction of aSyn production may provide a disease-modifying therapy for PD. We show that antisense oligonucleotides (ASOs) reduce production of aSyn in rodent preformed fibril (PFF) models of PD. Reduced aSyn production leads to prevention and removal of established aSyn pathology and prevents dopaminergic cell dysfunction. In addition, we address the translational potential of the approach through characterization of human SNCA-targeting ASOs that efficiently suppress the human SNCA transcript in vivo. We demonstrate broad activity and distribution of the human SNCA ASOs throughout the nonhuman primate brain and a corresponding decrease in aSyn cerebral spinal fluid (CSF) levels. Taken together, these data suggest that, by inhibiting production of aSyn, it may be possible to reverse established pathology; thus, these data support the development of SNCA ASOs as a potential disease-modifying therapy for PD and related synucleinopathies.


Assuntos
Encéfalo/efeitos dos fármacos , Oligonucleotídeos Antissenso/uso terapêutico , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Técnicas de Cultura de Células , Líquido Cefalorraquidiano/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , alfa-Sinucleína/genética
17.
Nucleic Acids Res ; 49(2): 657-673, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33367834

RESUMO

Antisense oligonucleotides (ASOs) have emerged as a new class of drugs to treat a wide range of diseases, including neurological indications. Spinraza, an ASO that modulates splicing of SMN2 RNA, has shown profound disease modifying effects in Spinal Muscular Atrophy (SMA) patients, energizing efforts to develop ASOs for other neurological diseases. While SMA specifically affects spinal motor neurons, other neurological diseases affect different central nervous system (CNS) regions, neuronal and non-neuronal cells. Therefore, it is important to characterize ASO distribution and activity in all major CNS structures and cell types to have a better understanding of which neurological diseases are amenable to ASO therapy. Here we present for the first time the atlas of ASO distribution and activity in the CNS of mice, rats, and non-human primates (NHP), species commonly used in preclinical therapeutic development. Following central administration of an ASO to rodents, we observe widespread distribution and target RNA reduction throughout the CNS in neurons, oligodendrocytes, astrocytes and microglia. This is also the case in NHP, despite a larger CNS volume and more complex neuroarchitecture. Our results demonstrate that ASO drugs are well suited for treating a wide range of neurological diseases for which no effective treatments are available.


Assuntos
Sistema Nervoso Central/química , Camundongos/metabolismo , Oligonucleotídeos Antissenso/farmacocinética , Primatas/metabolismo , Ratos/metabolismo , Animais , Sistema Nervoso Central/citologia , Feminino , Hibridização In Situ , Injeções Intraventriculares , Injeções Espinhais , Macaca fascicularis , Masculino , Neuroglia/química , Neurônios/química , Oligonucleotídeos Antissenso/administração & dosagem , Especificidade de Órgãos , RNA Longo não Codificante/análise , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , Ratos Sprague-Dawley , Ribonuclease H , Distribuição Tecidual
18.
Annu Rev Pharmacol Toxicol ; 61: 831-852, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33035446

RESUMO

The genetic basis for most inherited neurodegenerative diseases has been identified, yet there are limited disease-modifying therapies for these patients. A new class of drugs-antisense oligonucleotides (ASOs)-show promise as a therapeutic platform for treating neurological diseases. ASOs are designed to bind to the RNAs either by promoting degradation of the targeted RNA or by elevating expression by RNA splicing. Intrathecal injection into the cerebral spinal fluid results in broad distribution of antisense drugs and long-term effects. Approval of nusinersen in 2016 demonstrated that effective treatments for neurodegenerative diseases can be identified and that treatments not only slow disease progression but also improve some symptoms. Antisense drugs are currently in development for amyotrophic lateral sclerosis, Huntington's disease, Alzheimer's disease, Parkinson's disease, and Angelman syndrome, and several drugs are in late-stage research for additional neurological diseases. This review highlights the advances in antisense technology as potential treatments for neurological diseases.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Preparações Farmacêuticas , Humanos , Oligonucleotídeos Antissenso , RNA
19.
Mol Ther Nucleic Acids ; 21: 1006-1016, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32818920

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is a lethal, autosomal dominant neurodegenerative disease caused by a polyglutamine expansion in the ATAXIN-1 (ATXN1) protein. Preclinical studies demonstrate the therapeutic efficacy of approaches that target and reduce Atxn1 expression in a non-allele-specific manner. However, studies using Atxn1-/- mice raise cautionary notes that therapeutic reductions of ATXN1 might lead to undesirable effects such as reduction in the activity of the tumor suppressor Capicua (CIC), activation of the protease ß-secretase 1 (BACE1) and subsequent increased amyloidogenic cleavage of the amyloid precursor protein (APP), or a reduction in hippocampal neuronal precursor cells that would impact hippocampal function. Here, we tested whether an antisense oligonucleotide (ASO)-mediated reduction of Atxn1 produced unwanted effects involving BACE1, CIC activity, or reduction in hippocampal neuronal precursor cells. Notably, no effects on BACE1, CIC tumor suppressor function, or number of hippocampal neuronal precursor cells were found in mice subjected to a chronic in vivo ASO-mediated reduction of Atxn1. These data provide further support for targeted reductions of ATXN1 as a therapeutic approach for SCA1.

20.
Nucleic Acids Res ; 48(19): 10615-10631, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32776089

RESUMO

Lowering of prion protein (PrP) expression in the brain is a genetically validated therapeutic hypothesis in prion disease. We recently showed that antisense oligonucleotide (ASO)-mediated PrP suppression extends survival and delays disease onset in intracerebrally prion-infected mice in both prophylactic and delayed dosing paradigms. Here, we examine the efficacy of this therapeutic approach across diverse paradigms, varying the dose and dosing regimen, prion strain, treatment timepoint, and examining symptomatic, survival, and biomarker readouts. We recapitulate our previous findings with additional PrP-targeting ASOs, and demonstrate therapeutic benefit against four additional prion strains. We demonstrate that <25% PrP suppression is sufficient to extend survival and delay symptoms in a prophylactic paradigm. Rise in both neuroinflammation and neuronal injury markers can be reversed by a single dose of PrP-lowering ASO administered after the detection of pathological change. Chronic ASO-mediated suppression of PrP beginning at any time up to early signs of neuropathology confers benefit similar to constitutive heterozygous PrP knockout. Remarkably, even after emergence of frank symptoms including weight loss, a single treatment prolongs survival by months in a subset of animals. These results support ASO-mediated PrP lowering, and PrP-lowering therapeutics in general, as a promising path forward against prion disease.


Assuntos
Oligonucleotídeos Antissenso/uso terapêutico , Doenças Priônicas/terapia , Proteínas Priônicas/genética , Terapêutica com RNAi/métodos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Camundongos , Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso/química , Proteínas Priônicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA