Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 83(6): 1992-2001, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31710137

RESUMO

PURPOSE: To assess the sodium MRI signal loss resulting from typically used RF excitation pulses in human skeletal muscle, patellar cartilage, and skin. METHODS: A double flip-angle experiment was performed 3 times on the knees of 5 healthy volunteers with prescribed ω1 = γB1 of 1.67 kHz, 0.333 kHz, and 0.167 kHz. This was done to search for ω1 -dependent increased rates of sodium-23 central resonance flipping known to result from residual quadrupole splitting (ωQ ), as this flip-angle effect is associated with signal loss. This study facilitated in vivo regression of Gaussian-distributed residual quadrupole splitting SD (ωQ(SD) ) as well as T2fast and T2slow . Signal loss predicted from simulation was then compared with images acquired using 90° RF pulse lengths of 0.5 ms, 0.25 ms, and 0.15 ms. RESULTS: Sodium-23 central resonance flipping was significantly greater than prescribed (44% cartilage, 23% skin, 9% muscle) using ω1 = 0.167 kHz, but only 4% cartilage, 5% skin, and 2% muscle using ω1 = 1.67 kHz. Regression yielded ωQ(SD) = 420 ± 50 Hz for cartilage but no significant ωQ(SD) for skin or muscle. This points to rapid biexponential relaxation as the cause of the flip-angle effect for skin/muscle. The T2fast(60%) /T2slow(40%) values were 1.6 ± 0.8 ms/16.1 ± 2.5 ms for muscle, 2.7 ± 0.9 ms/18.4 ± 2.5 ms for cartilage, and 0.4 ± 0.1 ms/9.3 ± 1.7 ms for skin. Simulation predicted signal loss of 6% ± 3%, 3% ± 1%, and 2% ± 1% for muscle, 16% ± 3%, 6% ± 1%, and 3% ± 1% for cartilage, and 26% ± 7%, 15% ± 4%, and 10% ± 3% for skin when using 90° RF pulse lengths of 0.5 ms, 0.25 ms, and 0.15 ms, matching experiment. CONCLUSION: High-power (short) RF pulses are necessary to reduce excitation-related signal loss, particularly for sodium-23 imaging of cartilage and skin.


Assuntos
Imageamento por Ressonância Magnética , Sódio , Cartilagem , Humanos , Músculo Esquelético/diagnóstico por imagem , Ondas de Rádio
2.
IEEE Trans Med Imaging ; 39(4): 934-943, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31478843

RESUMO

This paper explores the competency of the time domain ultra-wideband (UWB)-circular synthetic aperture radar (CSAR) to image the breast and detect tumors. The image reconstruction is performed using a time domain global back projection technique adapted to the circular trajectory data acquisition. This paper also proposes a sectional image reconstruction method to compensate for the group velocity changes in different layers of a multilayer medium. Experiments on an advanced breast phantom examines the suitability of this technique for breast tumor imaging. The advanced breast phantom is designed based on a MRI of a real patient, fabricated using 3D printing technology, and filled with liquids that emulate normal and cancerous tissues. The measurement results, compared with MRI imaging of the phantom, demonstrate the suitability of the UWB-CSAR method for breast tumor imaging. This method can be a tool for early diagnosis as well as for treatment monitoring during chemotherapy or radiotherapy.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento de Micro-Ondas , Feminino , Humanos , Imagens de Fantasmas
3.
Magn Reson Imaging ; 48: 89-95, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29278763

RESUMO

Placing dielectric pads adjacent to the imaging region is an effective method to increase the signal locally and also increase the radio frequency magnetic field homogeneity in magnetic resonance imaging. The use of local high permittivity pads is becoming more common, and this work focuses on the effect of larger dielectric pads on the transmit/receive performance of an array (e.g., coupling, efficiency and safety) having 8 channels, used to image a cylindrical phantom at 4.7T (200MHz). We investigate the effects of a dielectric liner surrounding the whole volume of interest both with and without an air gap. The simulations reveal that high permittivities are not recommended because they substantially degrade the longitudinal homogeneity, resulting in hot spots of specific absorption rate at the driven end of the array. Furthermore, high permittivities lead to dielectric resonances in the liner at frequencies close to the Larmor frequency, potentially degrading the performance of the array. Indeed, simulations and measurements confirm that a compromise must be made between improvements in field homogeneity and transmit performance, and that an optimal permittivity exists which is much lower than those commonly used in the literature. The optimal permittivity achieves minimal coupling (<-23dB) between array elements, exhibits an intrinsic electromagnetic impedance equal to the geometric mean of those of the coil former and phantom and can be realized with inexpensive materials. For this permittivity the performance with an air gap of thickness equal to that of the liner is equivalent to that without the air gap.


Assuntos
Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Desenho de Equipamento , Campos Magnéticos , Ondas de Rádio
4.
Artigo em Inglês | MEDLINE | ID: mdl-26737919

RESUMO

This paper describes the possibility of detecting tumors in human breast using ultra-wideband (UWB) circular synthetic aperture radar (CSAR). CSAR is a subset of SAR which is a radar imaging technique using a circular data acquisition pattern. Tomographic image reconstruction is done using a time domain global back projection technique adapted to CSAR. Experiments are conducted on a breast phantoms made of pork fat emulating normal and cancerous conditions. Preliminary experimental results show that microwave imaging of a breast phantom using UWB-CSAR is a simple and low-cost method, efficiently capable of detecting the presence of tumors.


Assuntos
Algoritmos , Neoplasias da Mama/diagnóstico , Processamento de Imagem Assistida por Computador , Micro-Ondas , Radar , Tomografia/métodos , Mama/patologia , Feminino , Humanos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA