Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(35): eadp6471, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213351

RESUMO

Amyloid fibril formation is a central biochemical process in pathology and physiology. Over decades, substantial advances were made in elucidating the mechanisms of amyloidogenesis, its links to disease, and the production of functional supramolecular structures. While the term "amyloid" denotes starch-like features of these assemblies, no evidence of amyloidogenic behavior of polysaccharides has been so far reported. Here, we investigate the potential of amylum (starch) not only to self-assemble into hierarchical fibrillar structures but also to exhibit canonical amyloidogenic properties. Ordered amylum structures were formed through a sigmoidal growth process with characteristic amyloid features including typical nanofibril morphology, binding to indicative dyes, inherent luminescence, apple-green birefringence upon Congo red staining, and notable mechanical rigidity. These findings shed light on polysaccharide self-assembly and expand the generic amyloid phenomenon.


Assuntos
Amiloide , Amiloide/química , Amiloide/metabolismo , Amido/química , Vermelho Congo/química
2.
Biomacromolecules ; 25(6): 3607-3619, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38776179

RESUMO

Studying how synthetic polymer assemblies respond to sequential enzymatic stimuli can uncover intricate interactions in biological systems. Using amidase- and esterase-responsive PEG-based diblock (DBA) and triblock amphiphiles (TBAs), we created two distinct formulations: amidase-responsive DBA with esterase-responsive TBA and vice versa. We studied their cascade responses to the two enzymes and the sequence of their introduction. These formulations underwent cascade mesophase transitions upon the addition of the DBA-degrading enzyme, transitioning from (i) coassembled micelles to (ii) triblock-based hydrogel, and ultimately to (iii) dissolved polymers when exposed to the TBA hydrolyzing enzyme. The specific pathway of the two mesophase transitions depended on the compositions of the formulations and the enzyme introduction sequence. The results highlight the potential for designing polymeric formulations with programmable multistep enzymatic responses, mimicking the complex behavior of biological macromolecules.


Assuntos
Polietilenoglicóis , Polietilenoglicóis/química , Micelas , Esterases/química , Esterases/metabolismo , Amidoidrolases/química , Amidoidrolases/metabolismo , Transição de Fase , Polímeros/química , Hidrogéis/química
3.
Eur Phys J E Soft Matter ; 47(2): 13, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358563

RESUMO

Intrinsically disordered proteins (IDPs) are a subset of proteins that lack stable secondary structure. Given their polymeric nature, previous mean-field approximations have been used to describe the statistical structure of IDPs. However, the amino-acid sequence heterogeneity and complex intermolecular interaction network have significantly impeded the ability to get proper approximations. One such case is the intrinsically disordered tail domain of neurofilament low (NFLt), which comprises a 50 residue-long uncharged domain followed by a 96 residue-long negatively charged domain. Here, we measure two NFLt variants to identify the impact of the NFLt two main subdomains on its complex interactions and statistical structure. Using synchrotron small-angle x-ray scattering, we find that the uncharged domain of the NFLt induces attractive interactions that cause it to self-assemble into star-like polymer brushes. On the other hand, when the uncharged domain is truncated, the remaining charged N-terminal domains remain isolated in solution with typical polyelectrolyte characteristics. We further discuss how competing long- and short-ranged interactions within the polymer brushes dominate their ensemble structure and, in turn, their implications on previously observed phenomena in NFL native and diseased states.


Assuntos
Filamentos Intermediários , Proteínas Intrinsicamente Desordenadas , Polieletrólitos , Polímeros , Sequência de Aminoácidos
4.
Sci Rep ; 13(1): 21688, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066072

RESUMO

The cornerstone of structural biology is the unique relationship between protein sequence and the 3D structure at equilibrium. Although intrinsically disordered proteins (IDPs) do not fold into a specific 3D structure, breaking this paradigm, some IDPs exhibit large-scale organization, such as liquid-liquid phase separation. In such cases, the structural plasticity has the potential to form numerous self-assembled structures out of thermal equilibrium. Here, we report that high-temperature incubation time is a defining parameter for micro and nanoscale self-assembly of resilin-like IDPs. Interestingly, high-resolution scanning electron microscopy micrographs reveal that an extended incubation time leads to the formation of micron-size rods and ellipsoids that depend on the amino acid sequence. More surprisingly, a prolonged incubation time also induces amino acid composition-dependent formation of short-range nanoscale order, such as periodic lamellar nanostructures. We, therefore, suggest that regulating the period of high-temperature incubation, in the one-phase regime, can serve as a unique method of controlling the hierarchical self-assembly mechanism of structurally disordered proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas , Nanoestruturas , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Temperatura , Sequência de Aminoácidos
6.
Eur Phys J E Soft Matter ; 46(10): 100, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847354

RESUMO

Understanding the dynamic structure of intrinsically disordered proteins (IDPs) is important to deciphering their biological functions. Here, we exploit precision entropic elasticity measurements to infer the conformational behavior of a model IDP construct formed from the disordered tail of the neurofilament low molecular weight protein. The IDP construct notably displays a low-force power-law elastic regime, consistent with the Pincus blob model, which allows direct extraction of the Flory exponent, [Formula: see text], from the force-extension relationship. We find [Formula: see text] increases with added denaturant, transitioning from a nearly ideal chain to a swollen chain in a manner quantitatively consistent with measurements of IDP dimensions from other experimental techniques. We suggest that measurements of entropic elasticity could be broadly useful in the study of IDP structure.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Elasticidade
7.
ArXiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693177

RESUMO

The cornerstone of structural biology is the unique relationship between protein sequence and the 3D structure at equilibrium. Although intrinsically disordered proteins (IDPs) do not fold into a specific 3D structure, breaking this paradigm, some IDPs exhibit large-scale organization, such as liquid-liquid phase separation. In such cases, the structural plasticity has the potential to form numerous self-assembled structures out of thermal equilibrium. Here, we report that high-temperature incubation time is a defining parameter for micro and nanoscale self-assembly of resilin-like IDPs. Interestingly, high-resolution scanning electron microscopy micrographs reveal that an extended incubation time leads to the formation of micron-size rods and ellipsoids that depend on the amino acid sequence. More surprisingly, a prolonged incubation time also induces amino acid composition-dependent formation of short-range nanoscale order, such as periodic lamellar nanostructures. We can correlate the lamellar structures to \b{eta}-sheet formation and demonstrate similarities between the observed nanoscopic structural arrangement and spider silk. We, therefore, suggest that regulating the period of high-temperature incubation, in the one-phase regime, can serve as a unique method of controlling the hierarchical self-assembly mechanism of structurally disordered proteins.

8.
Res Sq ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37720053

RESUMO

The cornerstone of structural biology is the unique relationship between protein sequence and the 3D structure at equilibrium. Although intrinsically disordered proteins (IDPs) do not fold into a specific 3D structure, breaking this paradigm, some IDPs exhibit large-scale organization, such as liquid-liquid phase separation. In such cases, the structural plasticity has the potential to form numerous self-assembled structures out of thermal equilibrium. Here, we report that high-temperature incubation time is a defining parameter for micro and nanoscale self-assembly of resilin-like IDPs. Interestingly, high-resolution scanning electron microscopy micrographs reveal that an extended incubation time leads to the formation of micron-size rods and ellipsoids that depend on the amino acid sequence. More surprisingly, a prolonged incubation time also induces amino acid composition-dependent formation of short-range nanoscale order, such as periodic lamellar nanostructures. We can correlate the lamellar structures to ß-sheet formation and demonstrate similarities between the observed nanoscopic structural arrangement and spider silk. We, therefore, suggest that regulating the period of high-temperature incubation, in the one-phase regime, can serve as a unique method of controlling the hierarchical self-assembly mechanism of structurally disordered proteins.

9.
Proc Natl Acad Sci U S A ; 120(30): e2220180120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459524

RESUMO

Short-range interactions and long-range contacts drive the 3D folding of structured proteins. The proteins' structure has a direct impact on their biological function. However, nearly 40% of the eukaryotes proteome is composed of intrinsically disordered proteins (IDPs) and protein regions that fluctuate between ensembles of numerous conformations. Therefore, to understand their biological function, it is critical to depict how the structural ensemble statistics correlate to the IDPs' amino acid sequence. Here, using small-angle X-ray scattering and time-resolved Förster resonance energy transfer (trFRET), we study the intramolecular structural heterogeneity of the neurofilament low intrinsically disordered tail domain (NFLt). Using theoretical results of polymer physics, we find that the Flory scaling exponent of NFLt subsegments correlates linearly with their net charge, ranging from statistics of ideal to self-avoiding chains. Surprisingly, measuring the same segments in the context of the whole NFLt protein, we find that regardless of the peptide sequence, the segments' structural statistics are more expanded than when measured independently. Our findings show that while polymer physics can, to some level, relate the IDP's sequence to its ensemble conformations, long-range contacts between distant amino acids play a crucial role in determining intramolecular structures. This emphasizes the necessity of advanced polymer theories to fully describe IDPs ensembles with the hope that it will allow us to model their biological function.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Sequência de Aminoácidos , Eucariotos/metabolismo , Polímeros
10.
Biomacromolecules ; 24(1): 98-108, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36469950

RESUMO

Intrinsically disordered peptide amphiphiles (IDPAs) present a novel class of synthetic conjugates that consist of short hydrophilic polypeptides anchored to hydrocarbon chains. These hybrid polymer-lipid block constructs spontaneously self-assemble into dispersed nanoscopic aggregates or ordered mesophases in aqueous solution due to hydrophobic interactions. Yet, the possible sequence variations and their influence on the self-assembly structures are vast and have hardly been explored. Here, we measure the nanoscopic self-assembled structures of four IDPA systems that differ by their amino acid sequence. We show that permutations in the charge pattern along the sequence remarkably alter the headgroup conformation and consequently alter the pH-triggered phase transitions between spherical, cylindrical micelles and hexagonal condensed phases. We demonstrate that even a single amino acid mutation is sufficient to tune structural transitions in the condensed IDPA mesophases, while peptide conformations remain unfolded and disordered. Furthermore, alteration of the peptide sequence can render IDPAs to become susceptible to enzymatic cleavage and induce enzymatically activated phase transitions. These results hold great potential for embedding multiple functionalities into lipid nanoparticle delivery systems by incorporating IDPAs with the desired properties.


Assuntos
Micelas , Peptídeos , Peptídeos/química , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Água/química
11.
J Am Chem Soc ; 143(30): 11879-11888, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34310121

RESUMO

Amphiphilic molecules and their self-assembled structures have long been the target of extensive research due to their potential applications in fields ranging from materials design to biomedical and cosmetic applications. Increasing demands for functional complexity have been met with challenges in biochemical engineering, driving researchers to innovate in the design of new amphiphiles. An emerging class of molecules, namely, peptide amphiphiles, combines key advantages and circumvents some of the disadvantages of conventional phospholipids and block copolymers. Herein, we present new peptide amphiphiles composed of an intrinsically disordered peptide conjugated to two variants of hydrophobic dendritic domains. These molecules, termed intrinsically disordered peptide amphiphiles (IDPA), exhibit a sharp pH-induced micellar phase-transition from low-dispersity spheres to extremely elongated worm-like micelles. We present an experimental characterization of the transition and propose a theoretical model to describe the pH-response. We also present the potential of the shape transition to serve as a mechanism for the design of a cargo hold-and-release application. Such amphiphilic systems demonstrate the power of tailoring the interactions between disordered peptides for various stimuli-responsive biomedical applications.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Tensoativos/química , Concentração de Íons de Hidrogênio , Micelas , Tamanho da Partícula , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA