Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(42): 47739-47746, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33047607

RESUMO

High-performance In-Ga-Zn-O (IGZO) Schottky diodes (SDs) were fabricated using hydrogenated IGZO (IGZO:H) at a maximum process temperature of 150 °C. IGZO:H was prepared by Ar + O2 + H2 sputtering. IGZO:H SDs on a glass substrate exhibited superior electrical properties with a very high rectification ratio of 3.8 × 1010, an extremely large Schottky barrier height of 1.17 eV, and a low ideality factor of 1.07. It was confirmed that the hydrogen incorporated during IGZO:H deposition increased the band gap energy from 3.02 eV (IGZO) to 3.29 eV (IGZO:H). Thus, it was considered that the increase in band gap energy (decrease in electron affinity) of IGZO:H contributed to the increase in the Schottky barrier height of the SDs. Angle-resolved hard X-ray photoelectron spectroscopy analysis revealed that oxygen vacancies in IGZO:H were much fewer than those in IGZO, especially in the region near the film surface. Moreover, it was found that the density of near-conduction band minimum states in IGZO:H was lower than that in IGZO. Therefore, IGZO:H played a key role in improving the Schottky interface quality, namely, the increase of Schottky barrier height, decrease of oxygen vacancies, and reduction of near-conduction band minimum states. Finally, we fabricated a flexible IGZO:H SD on a poly(ethylene naphthalate) substrate, and it exhibited record electrical properties with a rectification ratio of 1.7 × 109, Schottky barrier height of 1.12 eV, and ideality factor of 1.10. To the best of our knowledge, both the IGZO:H SDs formed on glass and poly(ethylene naphthalate) substrates achieved the best performance among the IGZO SDs reported to date. The proposed method successfully demonstrated great potential for future flexible electronic applications.

2.
Materials (Basel) ; 13(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325945

RESUMO

Electrical and carrier transport properties in In-Ga-Zn-O thin-film transistors (IGZO TFTs) with a heterojunction channel were investigated. For the heterojunction IGZO channel, a high-In composition IGZO layer (IGZO-high-In) was deposited on a typical compositions IGZO layer (IGZO-111). From the optical properties and photoelectron yield spectroscopy measurements, the heterojunction channel was expected to have the type-II energy band diagram which possesses a conduction band offset (ΔEc) of ~0.4 eV. A depth profile of background charge density indicated that a steep ΔEc is formed even in the amorphous IGZO heterojunction interface deposited by sputtering. A field effect mobility (µFE) of bottom gate structured IGZO TFTs with the heterojunction channel (hetero-IGZO TFTs) improved to ~20 cm2 V-1 s-1, although a channel/gate insulator interface was formed by an IGZO-111 (µFE = ~12 cm2 V-1 s-1). Device simulation analysis revealed that the improvement of µFE in the hetero-IGZO TFTs was originated by a quantum confinement effect for electrons at the heterojunction interface owing to a formation of steep ΔEc. Thus, we believe that heterojunction IGZO channel is an effective method to improve electrical properties of the TFTs.

3.
Materials (Basel) ; 12(19)2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581707

RESUMO

We have found a memristive characteristic of an amorphous Ga-Sn-O (α-GTO) thin-film device with double layers of different oxygen density. The double layers are deposited using radio frequency (RF) magnetron sputtering, whose gas for the lower layer contains less oxygen, whereas that for the upper layer contains more oxygen, and it is assumed that the former contains more oxygen vacancies, whereas the latter contains fewer vacancies. The characteristic is explained by drift of oxygen and is stable without forming operation because additional structures such as filament are unnecessary. The fabrication is easy because the double layers are successively deposited simply by changing the oxygen ratio in the chamber.

4.
Sci Rep ; 9(1): 2757, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808898

RESUMO

We have found a memristive characteristic of an α-GTO thin-film device. The α-GTO thin-film layer is deposited using radio-frequency (RF) magnetron sputtering at room temperature and sandwiched between the Al top and bottom electrodes. It is found that the hysteresis loop of the flowing current (I) and applied voltage (V) characteristic becomes larger and stable after the one hundredth cycle. The electrical resistances for the high-resistance state (HRS) and low-resistance state (LRS) are clearly different and relatively stable. Based on various analysis, it is suggested that the memristive characteristic is due to the chemical reaction between the SnO2 and SnO blocked by AlOx on the Al bottom electrode. It is marvelous that the memristive characteristic can be realized by such common materials, simple structures, and easy fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA