Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 11579, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078928

RESUMO

Histopathology tissue analysis is considered the gold standard in cancer diagnosis and prognosis. Whole-slide imaging (WSI), i.e., the scanning and digitization of entire histology slides, are now being adopted across the world in pathology labs. Trained histopathologists can provide an accurate diagnosis of biopsy specimens based on WSI data. Given the dimensionality of WSIs and the increase in the number of potential cancer cases, analyzing these images is a time-consuming process. Automated segmentation of tumorous tissue helps in elevating the precision, speed, and reproducibility of research. In the recent past, deep learning-based techniques have provided state-of-the-art results in a wide variety of image analysis tasks, including the analysis of digitized slides. However, deep learning-based solutions pose many technical challenges, including the large size of WSI data, heterogeneity in images, and complexity of features. In this study, we propose a generalized deep learning-based framework for histopathology tissue analysis to address these challenges. Our framework is, in essence, a sequence of individual techniques in the preprocessing-training-inference pipeline which, in conjunction, improve the efficiency and the generalizability of the analysis. The combination of techniques we have introduced includes an ensemble segmentation model, division of the WSI into smaller overlapping patches while addressing class imbalances, efficient techniques for inference, and an efficient, patch-based uncertainty estimation framework. Our ensemble consists of DenseNet-121, Inception-ResNet-V2, and DeeplabV3Plus, where all the networks were trained end to end for every task. We demonstrate the efficacy and improved generalizability of our framework by evaluating it on a variety of histopathology tasks including breast cancer metastases (CAMELYON), colon cancer (DigestPath), and liver cancer (PAIP). Our proposed framework has state-of-the-art performance across all these tasks and is ranked within the top 5 currently for the challenges based on these datasets. The entire framework along with the trained models and the related documentation are made freely available at GitHub and PyPi. Our framework is expected to aid histopathologists in accurate and efficient initial diagnosis. Moreover, the estimated uncertainty maps will help clinicians to make informed decisions and further treatment planning or analysis.

2.
Front Comput Neurosci ; 15: 651959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584235

RESUMO

[This corrects the article DOI: 10.3389/fncom.2020.00006.].

3.
Artigo em Inglês | MEDLINE | ID: mdl-32116620

RESUMO

The accurate automatic segmentation of gliomas and its intra-tumoral structures is important not only for treatment planning but also for follow-up evaluations. Several methods based on 2D and 3D Deep Neural Networks (DNN) have been developed to segment brain tumors and to classify different categories of tumors from different MRI modalities. However, these networks are often black-box models and do not provide any evidence regarding the process they take to perform this task. Increasing transparency and interpretability of such deep learning techniques is necessary for the complete integration of such methods into medical practice. In this paper, we explore various techniques to explain the functional organization of brain tumor segmentation models and to extract visualizations of internal concepts to understand how these networks achieve highly accurate tumor segmentations. We use the BraTS 2018 dataset to train three different networks with standard architectures and outline similarities and differences in the process that these networks take to segment brain tumors. We show that brain tumor segmentation networks learn certain human-understandable disentangled concepts on a filter level. We also show that they take a top-down or hierarchical approach to localizing the different parts of the tumor. We then extract visualizations of some internal feature maps and also provide a measure of uncertainty with regards to the outputs of the models to give additional qualitative evidence about the predictions of these networks. We believe that the emergence of such human-understandable organization and concepts might aid in the acceptance and integration of such methods in medical diagnosis.

4.
Front Neurosci ; 14: 27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153349

RESUMO

Biomedical imaging Is an important source of information in cancer research. Characterizations of cancer morphology at onset, progression, and in response to treatment provide complementary information to that gleaned from genomics and clinical data. Accurate extraction and classification of both visual and latent image features Is an increasingly complex challenge due to the increased complexity and resolution of biomedical image data. In this paper, we present four deep learning-based image analysis methods from the Computational Precision Medicine (CPM) satellite event of the 21st International Medical Image Computing and Computer Assisted Intervention (MICCAI 2018) conference. One method Is a segmentation method designed to segment nuclei in whole slide tissue images (WSIs) of adult diffuse glioma cases. It achieved a Dice similarity coefficient of 0.868 with the CPM challenge datasets. Three methods are classification methods developed to categorize adult diffuse glioma cases into oligodendroglioma and astrocytoma classes using radiographic and histologic image data. These methods achieved accuracy values of 0.75, 0.80, and 0.90, measured as the ratio of the number of correct classifications to the number of total cases, with the challenge datasets. The evaluations of the four methods indicate that (1) carefully constructed deep learning algorithms are able to produce high accuracy in the analysis of biomedical image data and (2) the combination of radiographic with histologic image information improves classification performance.

5.
Med Image Anal ; 59: 101561, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31671320

RESUMO

Diabetic Retinopathy (DR) is the most common cause of avoidable vision loss, predominantly affecting the working-age population across the globe. Screening for DR, coupled with timely consultation and treatment, is a globally trusted policy to avoid vision loss. However, implementation of DR screening programs is challenging due to the scarcity of medical professionals able to screen a growing global diabetic population at risk for DR. Computer-aided disease diagnosis in retinal image analysis could provide a sustainable approach for such large-scale screening effort. The recent scientific advances in computing capacity and machine learning approaches provide an avenue for biomedical scientists to reach this goal. Aiming to advance the state-of-the-art in automatic DR diagnosis, a grand challenge on "Diabetic Retinopathy - Segmentation and Grading" was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI - 2018). In this paper, we report the set-up and results of this challenge that is primarily based on Indian Diabetic Retinopathy Image Dataset (IDRiD). There were three principal sub-challenges: lesion segmentation, disease severity grading, and localization of retinal landmarks and segmentation. These multiple tasks in this challenge allow to test the generalizability of algorithms, and this is what makes it different from existing ones. It received a positive response from the scientific community with 148 submissions from 495 registrations effectively entered in this challenge. This paper outlines the challenge, its organization, the dataset used, evaluation methods and results of top-performing participating solutions. The top-performing approaches utilized a blend of clinical information, data augmentation, and an ensemble of models. These findings have the potential to enable new developments in retinal image analysis and image-based DR screening in particular.


Assuntos
Aprendizado Profundo , Retinopatia Diabética/diagnóstico por imagem , Diagnóstico por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos , Fotografação , Conjuntos de Dados como Assunto , Humanos , Reconhecimento Automatizado de Padrão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA