Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1359494, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947328

RESUMO

Sialic acids are found as terminal sugars on glycan structures on cellular surfaces. T cells carry these sialoglycans abundantly, and they are thought to serve multiple functions in cell adhesion, cell migration, and protection from complement attack. We studied the role of sialoglycans on T cells in a mouse model with a T cell-specific deletion of cytidine monophosphate-sialic acid synthase (CMAS), the enzyme that is crucial for the synthesis of sialoglycans. These mice showed a T-cell deficiency in peripheral lymphoid organs. Many T cells with an undeleted Cmas allele were found in the periphery, suggesting that they escaped the Cre-mediated deletion. The remaining peripheral T cells of T cell-specific Cmas KO mice had a memory-like phenotype. Additional depletion of the complement factor C3 could not rescue the phenotype, showing that the T-cell defect was not caused by a host complement activity. Cmas-deficient T cells showed a high level of activated caspase 3, indicating an ongoing apoptosis. In bone marrow chimeric cellular transfer experiments, we observed a strong competitive disadvantage of Cmas-deficient T cells compared to wild-type T cells. These results show that sialoglycans on the surface of T cells are crucial for T-cell survival and maintenance. This function has not been recognized before and is similar to the function of sialoglycans on B cells.


Assuntos
Camundongos Knockout , Ácidos Siálicos , Linfócitos T , Animais , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ácidos Siálicos/metabolismo , Sobrevivência Celular , Camundongos Endogâmicos C57BL , Apoptose , Complemento C3/metabolismo , Complemento C3/imunologia , Complemento C3/genética , Oxigenases de Função Mista
2.
Front Immunol ; 14: 1095830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969253

RESUMO

Systemic lupus erythematosus (SLE) is a severe autoimmune disease that displays considerable heterogeneity not only in its symptoms, but also in its environmental and genetic causes. Studies in SLE patients have revealed that many genetic variants contribute to disease development. However, often its etiology remains unknown. Existing efforts to determine this etiology have focused on SLE in mouse models revealing not only that mutations in specific genes lead to SLE development, but also that epistatic effects of several gene mutations significantly amplify disease manifestation. Genome-wide association studies for SLE have identified loci involved in the two biological processes of immune complex clearance and lymphocyte signaling. Deficiency in an inhibitory receptor expressed on B lymphocytes, Siglec-G, has been shown to trigger SLE development in aging mice, as have mutations in DNA degrading DNase1 and DNase1l3, that are involved in clearance of DNA-containing immune complexes. Here, we analyze the development of SLE-like symptoms in mice deficient in either Siglecg and DNase1 or Siglecg and DNase1l3 to evaluate potential epistatic effects of these genes. We found that germinal center B cells and follicular helper T cells were increased in aging Siglecg -/- x Dnase1 -/- mice. In contrast, anti-dsDNA antibodies and anti-nuclear antibodies were strongly increased in aging Siglecg-/- x Dnase1l3-/- mice, when compared to single-deficient mice. Histological analysis of the kidneys revealed glomerulonephritis in both Siglecg -/- x Dnase1 -/- and Siglecg-/- x Dnase1l3-/- mice, but with a stronger glomerular damage in the latter. Collectively, these findings underscore the impact of the epistatic effects of Siglecg with DNase1 and Dnase1l3 on disease manifestation and highlight the potential combinatory effects of other gene mutations in SLE.


Assuntos
Desoxirribonuclease I , Endodesoxirribonucleases , Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Camundongos , Modelos Animais de Doenças , DNA , Endodesoxirribonucleases/genética , Lúpus Eritematoso Sistêmico/genética , Desoxirribonuclease I/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética
3.
J Immunol ; 205(10): 2595-2605, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33020147

RESUMO

Siglec-15 is a conserved sialic acid-binding Ig-like lectin, which is expressed on osteoclasts. Deficiency of Siglec-15 leads to an impaired osteoclast development, resulting in a mild osteopetrotic phenotype. The role of Siglec-15 in arthritis is still largely unclear. To address this, we generated Siglec-15 knockout mice and analyzed them in a mouse arthritis model. We could show that Siglec-15 is directly involved in pathologic bone erosion in the K/BxN serum-transfer arthritis model. Histological analyses of joint destruction provided evidence for a significant reduction in bone erosion area and osteoclast numbers in Siglec-15-/- mice, whereas the inflammation area and cartilage destruction was comparable to wild-type mice. Thus, Siglec-15 on osteoclasts has a crucial function for bone erosion during arthritis. In addition, we generated a new monoclonal anti-Siglec-15 Ab to clarify its expression pattern on immune cells. Whereas this Ab demonstrated an almost exclusive Siglec-15 expression on murine osteoclasts and hardly any other expression on various other immune cell types, human Siglec-15 was more broadly expressed on human myeloid cells, including human osteoclasts. Taken together, our findings show a role of Siglec-15 as a regulator of pathologic bone resorption in arthritis and highlight its potential as a target for future therapies, as Siglec-15 blocking Abs are available.


Assuntos
Artrite Reumatoide/imunologia , Reabsorção Óssea/imunologia , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Osteoclastos/metabolismo , Animais , Artrite Experimental/sangue , Artrite Experimental/complicações , Artrite Experimental/genética , Artrite Experimental/imunologia , Artrite Reumatoide/sangue , Artrite Reumatoide/complicações , Artrite Reumatoide/genética , Reabsorção Óssea/patologia , Osso e Ossos/imunologia , Osso e Ossos/patologia , Células Cultivadas , Feminino , Humanos , Imunoglobulinas/genética , Leucócitos Mononucleares , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Osteoclastos/imunologia , Cultura Primária de Células
4.
J Immunol ; 204(12): 3360-3374, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32341059

RESUMO

B lymphocytes are important players of the adaptive immune system. However, not just activation of B cells but also regulation of B cell signaling is important to prevent hyperactivity and dysregulation of the immune response. Different mechanisms and proteins contribute to this balance. One of these is CD22, a member of the Siglec family. It is an inhibitory coreceptor of the BCR and inhibits B cell activation. Upon BCR stimulation, CD22-dependent inhibition of BCR signaling results in a decreased calcium mobilization. Although some CD22 binding partners have already been identified, the knowledge about the CD22 interactome is still incomplete. In this study, quantitative affinity purification-mass spectrometry enabled the delineation of the CD22 interactome in the B cell line DT40. These data will clarify molecular mechanisms and CD22 signaling events after BCR activation and revealed several new CD22-associated proteins. One new identified interaction partner is the E3 ubiquitin ligase cullin 3, which was revealed to regulate CD22 surface expression and clathrin-dependent CD22 internalization after BCR stimulation. Furthermore cullin 3 was identified to be important for B lymphocytes in general. B cell-specific cullin 3-deficient mice show reduced developing B cells in the bone marrow and a severe pro-B cell proliferation defect. Mature B cells in the periphery are also reduced and characterized by increased CD22 expression and additionally by preactivated and apoptotic phenotypes. The findings reveal novel functions of cullin 3 in B lymphocytes, namely regulating CD22 surface expression and internalization after B cell activation, as well as promoting proliferation of pro-B cells.


Assuntos
Linfócitos B/imunologia , Proliferação de Células/fisiologia , Proteínas Culina/imunologia , Células Precursoras de Linfócitos B/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Animais , Apoptose/imunologia , Medula Óssea/imunologia , Linhagem Celular , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos B/imunologia , Ubiquitina-Proteína Ligases/imunologia
5.
J Immunol ; 201(7): 2107-2116, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143587

RESUMO

Siglec-G and CD22 are inhibitory receptors on B cells and play an important role in the maintenance of tolerance. Although both molecules are expressed on all B cell populations at a similar level, Siglec-G was found to regulate exclusively B1a cells, whereas CD22 functions as an inhibitory receptor specifically on B2 cells. It is known that the mechanistic function of both Siglecs is regulated by sialic acid binding in a reciprocal manner, although it was not known until now how B cells would act when both Siglec-G and CD22 lack their ability to bind sialic acids. We answered this question by analyzing Siglec-G R120E x CD22 R130E mice. These mice show decreased numbers of mature recirculating B cells in the bone marrow similar to mice with mutations in CD22. Also, they show an increased B1a cell population in peritoneal cavity and a skewed BCR repertoire in peritoneal B1a cells, which is characteristic for mice with mutated Siglec-G. Ca2+ mobilization was strongly reduced in B2 cells and was altered in peritoneal B1a cells, whereas B cell survival was neither affected in B2 cells nor in B1a cells. Also, aging Siglec-G R120E x CD22 R130E mice do neither develop a general hyperactivated immune status nor autoimmunity. This demonstrates that Siglec binding to sialic acids as abundant self-ligands cannot be a dominant mechanism for the Siglec-mediated B cell tolerance induction.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Lectinas/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Ácidos Siálicos/metabolismo , Animais , Autoimunidade , Diferenciação Celular , Células Cultivadas , Humanos , Tolerância Imunológica , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Transdução de Sinais
6.
Mol Plant ; 3(1): 224-35, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20026477

RESUMO

Heterosis, or hybrid vigor, is one of the most important tools in plant breeding and has previously been demonstrated for plant freezing tolerance. Freezing tolerance is an important trait because it can limit the geographical distribution of plants and their agricultural yield. Plants from temperate climates increase in freezing tolerance during exposure to low, non-freezing temperatures in a process termed 'cold acclimation'. Metabolite profiling has indicated a major reprogramming of plant metabolism in the cold, but it has remained unclear in previous studies which of these changes are related to freezing tolerance. In the present study, we have used metabolic profiling to discover combinations of metabolites that predict freezing tolerance and its heterosis in Arabidopsis thaliana. We identified compatible solutes and, in particular, the pathway leading to raffinose as crucial statistical predictors for freezing tolerance and its heterosis, while some TCA cycle intermediates contribute only to predicting the heterotic phenotype. This indicates coordinate links between heterosis and metabolic pathways, suggesting that a limited number of regulatory genes may determine the extent of heterosis in this complex trait. In addition, several unidentified metabolites strongly contributed to the prediction of both freezing tolerance and its heterosis and we present an exemplary analysis of one of these, identifying it as a hexose conjugate.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/fisiologia , Congelamento , Regulação da Expressão Gênica de Plantas/fisiologia , Arabidopsis/genética , Biologia Computacional , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas/genética , Modelos Biológicos
7.
Plant Cell Environ ; 31(6): 813-27, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18284584

RESUMO

Heterosis is defined as the increased vigour of hybrids in comparison to their parents. We investigated 24 F(1) hybrid lines of Arabidopsis thaliana generated by reciprocally crossing either C24 or Col with six other parental accessions (Can, Co, Cvi, Ler, Rsch, Te) that differ widely in their freezing tolerance. The crosses differed in the degree of heterosis for freezing tolerance, both in the non-acclimated state and after a 14 d cold acclimation period. Crosses with C24 showed more heterosis than crosses with Col, and heterosis was stronger in acclimated than in non-acclimated plants. Leaf content of soluble sugars and proline showed more deviation from mid-parent values in crosses involving C24 than in those involving Col, and deviations were larger in acclimated than in non-acclimated plants. There were significant correlations between the content of different sugars and leaf freezing tolerance, as well as between heterosis effects in freezing tolerance and sugar content. Flavonoid content and composition varied between accessions, and between non-acclimated and acclimated plants. In the crosses, large deviations from the mid-parent values in the contents of different flavonols occurred, and there were strikingly strong correlations between both flavonol content and freezing tolerance, and between heterosis effects in freezing tolerance and flavonol content.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Carboidratos/química , Flavonoides/química , Vigor Híbrido/fisiologia , Aclimatação/genética , Aclimatação/fisiologia , Cruzamentos Genéticos , Congelamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA