Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
J Proteome Res ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829961

RESUMO

Asparaginase-based therapy is a cornerstone in acute lymphoblastic leukemia (ALL) treatment, capitalizing on the methylation status of the asparagine synthetase (ASNS) gene, which renders ALL cells reliant on extracellular asparagine. Contrastingly, ASNS expression in acute myeloid leukemia (AML) has not been thoroughly investigated, despite studies suggesting that AML with chromosome 7/7q deletions might have reduced ASNS levels. Here, we leverage reverse phase protein arrays to measure ASNS expression in 810 AML patients and assess its impact on outcomes. We find that AML with inv(16) has the lowest overall ASNS expression. While AML with deletion 7/7q had ASNS levels slightly lower than those of AML without deletion 7/7q, this observation was not significant. Low ASNS expression correlated with improved overall survival (46 versus 54 weeks, respectively, p = 0.011), whereas higher ASNS levels were associated with better response to venetoclax-based therapy. Protein correlation analysis demonstrated association between ASNS and proteins involved in methylation and DNA repair. In conclusion, while ASNS expression was not lower in patients with deletion 7/7q as initially predicted, ASNS levels were highly variable across AML patients. Further studies are needed to assess whether patients with low ASNS expression are susceptible to asparaginase-based therapy due to their inability to augment compensatory ASNS expression upon asparagine depletion.

2.
Nat Commun ; 15(1): 3681, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693155

RESUMO

Defining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively. We identify 54 variants with transcriptional effects and high-confidence gene connectivity. Additionally, functional interrogation of the top variant, rs1247117, reveals changes in chromatin accessibility, PU.1 binding affinity and gene expression, and deletion of the genomic interval containing rs1247117 sensitizes cells to vincristine. Together, these data demonstrate that noncoding regulatory variants associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to antileukemic agents.


Assuntos
Farmacogenética , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogênicas , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Criança , Resistencia a Medicamentos Antineoplásicos/genética , Variação Genética , Linhagem Celular Tumoral , Vincristina/uso terapêutico , Vincristina/farmacologia , Polimorfismo de Nucleotídeo Único , Alelos , Cromatina/metabolismo , Cromatina/genética , Transativadores/genética , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos
4.
Cancer Cell ; 42(4): 552-567.e6, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593781

RESUMO

Leukemia can arise at various stages of the hematopoietic differentiation hierarchy, but the impact of developmental arrest on drug sensitivity is unclear. Applying network-based analyses to single-cell transcriptomes of human B cells, we define genome-wide signaling circuitry for each B cell differentiation stage. Using this reference, we comprehensively map the developmental states of B cell acute lymphoblastic leukemia (B-ALL), revealing its strong correlation with sensitivity to asparaginase, a commonly used chemotherapeutic agent. Single-cell multi-omics analyses of primary B-ALL blasts reveal marked intra-leukemia heterogeneity in asparaginase response: resistance is linked to pre-pro-B-like cells, with sensitivity associated with the pro-B-like population. By targeting BCL2, a driver within the pre-pro-B-like cell signaling network, we find that venetoclax significantly potentiates asparaginase efficacy in vitro and in vivo. These findings demonstrate a single-cell systems pharmacology framework to predict effective combination therapies based on intra-leukemia heterogeneity in developmental state, with potentially broad applications beyond B-ALL.


Assuntos
Leucemia , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Asparaginase/farmacologia , Farmacologia em Rede , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Transdução de Sinais , Leucemia/tratamento farmacológico
5.
Cancers (Basel) ; 16(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672531

RESUMO

The addition of the proteasome inhibitor bortezomib to standard chemotherapy did not improve survival in pediatric acute myeloid leukemia (AML) when all patients were analyzed as a group in the Children's Oncology Group phase 3 trial AAML1031 (NCT01371981). Proteasome inhibition influences the chromatin landscape and proteostasis, and we hypothesized that baseline proteomic analysis of histone- and chromatin-modifying enzymes (HMEs) would identify AML subgroups that benefitted from bortezomib addition. A proteomic profile of 483 patients treated with AAML1031 chemotherapy was generated using a reverse-phase protein array. A relatively high expression of 16 HME was associated with lower EFS and higher 3-year relapse risk after AML standard treatment compared to low expressions (52% vs. 29%, p = 0.005). The high-HME profile correlated with more transposase-accessible chromatin, as demonstrated via ATAC-sequencing, and the bortezomib addition improved the 3-year overall survival compared with standard therapy (62% vs. 75%, p = 0.033). These data suggest that there are pediatric AML populations that respond well to bortezomib-containing chemotherapy.

6.
Lancet Haematol ; 11(4): e276-e286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452788

RESUMO

BACKGROUND: Hypomethylating agents combined with venetoclax are effective regimens in patients with acute myeloid leukaemia who are ineligible for intensive chemotherapy. Decitabine and cedazuridine (ASTX727) is an oral formulation of decitabine that achieves equivalent area-under-curve exposure to intravenous decitabine. We performed a single centre phase 2 study to evaluate the efficacy and safety of ASTX727 plus venetoclax. METHODS: This study enrolled patients with newly diagnosed (frontline treatment group) acute myeloid leukaemia who were ineligible for intensive chemotherapy (aged ≥75 years, an Eastern Cooperative Oncology Group [ECOG] performance status of 2-3, or major comorbidities) or relapsed or refractory acute myeloid leukaemia. Being aged 18 years or older and having an ECOG performance status of 2 or less were requirements for the relapsed or refractory disease treatment cohort, without any limits in the number of previous lines of therapy. Treatment consisted of ASTX727 (cedazuridine 100 mg and decitabine 35 mg) orally for 5 days and venetoclax 400 mg orally for 21-28 days in 28-day cycles. The primary outcome was overall response rate of ASTX727 plus venetoclax. Living patients who have not completed cycle one were not evaluable for response. Safety was analysed in all patients who started treatment. This study was registered on ClinicalTrials.gov (NCT04746235) and is ongoing. The data cutoff date for this analysis was Sept 22, 2023. FINDINGS: Between March 16, 2021, and Sept 18, 2023, 62 patients were enrolled (49 frontline and 13 relapsed or refractory) with a median age of 78 years (IQR 73-82). 36 (58%) were male; 53 (85%) were White, 4 (6%) Black, 2 (3%) Asian and 3 (5%) other or did not answer. 48 (77%) of 62 patients were European LeukemiaNet 2022 adverse risk, 24 (39%) had antecedent myelodysplastic syndromes, 12 (19%) had previously failed a hypomethylating agent, ten (16%) had therapy-related acute myeloid leukaemia, and 11 (18%) had TP53 mutations. The median follow-up time was 18·3 months (IQR 8·8-23·3). The overall response rate was 30 (64%) of 47 patients (95% CI 49-77) in frontline cohort and six (46%) of 13 patients (19-75) in relapsed or refractory cohort. The most common grade 3 or worse treatment-emergent adverse events were febrile neutropenia in 11 (18%) of 62 patients, pneumonia in eight (13%), respiratory failure in five (8%), bacteraemia in four (6%), and sepsis in four (6%). Three deaths occurred in patients in remission (one sepsis, one gastrointestinal haemorrhage, and one respiratory failure) and were potentially treatment related. INTERPRETATION: ASTX727 plus venetoclax is an active fully oral regimen and safe in most older or unfit patients with acute myeloid leukaemia. Our findings should be confirmed in larger multicentric studies. FUNDING: MD Anderson Cancer Center Support Grant, Myelodysplastic Syndrome/Acute Myeloid Leukaemia Moon Shot, Leukemia SPORE, Taiho Oncology, and Astex Pharmaceuticals.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Combinação de Medicamentos , Leucemia Mieloide Aguda , Insuficiência Respiratória , Sepse , Sulfonamidas , Uridina/análogos & derivados , Humanos , Masculino , Idoso , Idoso de 80 Anos ou mais , Feminino , Decitabina/efeitos adversos , Resultado do Tratamento , Leucemia Mieloide Aguda/diagnóstico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/tratamento farmacológico , Sepse/induzido quimicamente , Sepse/tratamento farmacológico
7.
Leukemia ; 38(5): 1046-1056, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531950

RESUMO

The use of Hypomethylating agents combined with Venetoclax (VH) for the treatment of Acute Myeloid Leukemia (AML) has greatly improved outcomes in recent years. However not all patients benefit from the VH regimen and a way to rationally select between VH and Conventional Chemotherapy (CC) for individual AML patients is needed. Here, we developed a proteomic-based triaging strategy using Reverse-phase Protein Arrays (RPPA) to optimize therapy selection. We evaluated the expression of 411 proteins in 810 newly diagnosed adult AML patients, identifying 109 prognostic proteins, that divided into five patient expression profiles, which are useful for optimizing therapy selection. Furthermore, using machine learning algorithms, we determined a set of 14 proteins, among those 109, that were able to accurately recommend therapy, making it feasible for clinical application. Next, we identified a group of patients who did not benefit from either VH or CC and proposed target-based approaches to improve outcomes. Finally, we calculated that the clinical use of our proteomic strategy would have led to a change in therapy for 30% of patients, resulting in a 43% improvement in OS, resulting in around 2600 more cures from AML per year in the United States.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Compostos Bicíclicos Heterocíclicos com Pontes , Leucemia Mieloide Aguda , Proteômica , Sulfonamidas , Humanos , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/administração & dosagem , Sulfonamidas/uso terapêutico , Proteômica/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Pessoa de Meia-Idade , Feminino , Masculino , Prognóstico , Idoso , Adulto , Metilação de DNA , Idoso de 80 Anos ou mais , Adulto Jovem , Taxa de Sobrevida
8.
Cell Genom ; 3(12): 100442, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38116118

RESUMO

B cell lineage acute lymphoblastic leukemia (B-ALL) is composed of diverse molecular subtypes, and while transcriptional and DNA methylation profiling has been extensively examined, the chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq in primary B-ALL cells from 156 patients spanning ten molecular subtypes and present this dataset as a resource. Differential chromatin accessibility and transcription factor (TF) footprint profiling were employed and identified B-ALL cell of origin, TF-target gene interactions enriched in B-ALL, and key TFs associated with accessible chromatin sites preferentially active in B-ALL. We further identified over 20% of accessible chromatin sites exhibiting strong subtype enrichment and candidate TFs that maintain subtype-specific chromatin architectures. Over 9,000 genetic variants were uncovered, contributing to variability in chromatin accessibility among patient samples. Our data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic variants that promote unique gene-regulatory networks.

9.
Bio Protoc ; 13(15): e4731, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37575398

RESUMO

Resistance of acute lymphoblastic leukemia (ALL) cells to chemotherapy, whether present at diagnosis or acquired during treatment, is a major cause of treatment failure. Primary ALL cells are accessible for drug sensitivity testing at the time of new diagnosis or at relapse, but there are major limitations with current methods for determining drug sensitivity ex vivo. Here, we describe a functional precision medicine method using a fluorescence imaging platform to test drug sensitivity profiles of primary ALL cells. Leukemia cells are co-cultured with mesenchymal stromal cells and tested with a panel of 40 anti-leukemia drugs to determine individual patterns of drug resistance and sensitivity ("pharmacotype"). This imaging-based pharmacotyping assay addresses the limitations of prior ex vivo drug sensitivity methods by automating data analysis to produce high-throughput data while requiring fewer cells and significantly decreasing the labor-intensive time required to conduct the assay. The integration of drug sensitivity data with genomic profiling provides a basis for rational genomics-guided precision medicine. Key features Analysis of primary acute lymphoblastic leukemia (ALL) blasts obtained at diagnosis from bone marrow aspirate or peripheral blood. Experiments are performed ex vivo with mesenchymal stromal cell co-culture and require four days to complete. This fluorescence imaging-based protocol enhances previous ex vivo drug sensitivity assays and improves efficiency by requiring fewer primary cells while increasing the number of drugs tested to 40. It takes approximately 2-3 h for sample preparation and processing and a 1.5-hour imaging time. Graphical overview.

10.
Blood Cancer J ; 13(1): 101, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386016

RESUMO

In TP53 wild-type acute myeloid leukemia (AML), inhibition of MDM2 can enhance p53 protein expression and potentiate leukemic cell apoptosis. MDM2 inhibitor (MDM2i) monotherapy in AML has shown modest responses in clinical trials but combining options of MDM2i with other potent AML-directed agents like cytarabine and venetoclax could improve its efficacy. We conducted a phase I clinical trial (NCT03634228) to study the safety and efficacy of milademetan (an MDM2i) with low-dose cytarabine (LDAC)±venetoclax in adult patients with relapsed refractory (R/R) or newly diagnosed (ND; unfit) TP53 wild-type AML and performed comprehensive CyTOF analyses to interrogate multiple signaling pathways, the p53-MDM2 axis and the interplay between pro/anti-apoptotic molecules to identify factors that determine response and resistance to therapy. Sixteen patients (14 R/R, 2 N/D treated secondary AML) at a median age of 70 years (range, 23-80 years) were treated in this trial. Two patients (13%) achieved an overall response (complete remission with incomplete hematological recovery). Median cycles on trial were 1 (range 1-7) and at a median follow-up of 11 months, no patients remained on active therapy. Gastrointestinal toxicity was significant and dose-limiting (50% of patients ≥ grade 3). Single-cell proteomic analysis of the leukemia compartment revealed therapy-induced proteomic alterations and potential mechanisms of adaptive response to the MDM2i combination. The response was associated with immune cell abundance and induced the proteomic profiles of leukemia cells to disrupt survival pathways and significantly reduced MCL1 and YTHDF2 to potentiate leukemic cell death. The combination of milademetan, LDAC±venetoclax led to only modest responses with recognizable gastrointestinal toxicity. Treatment-induced reduction of MCL1 and YTHDF2 in an immune-rich milieu correlate with treatment response.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Proteína Supressora de Tumor p53 , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteômica , Leucemia Mieloide Aguda/tratamento farmacológico
11.
Proteomics Clin Appl ; 17(6): e2200109, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37287368

RESUMO

PURPOSE: The endoplasmic reticulum (ER) is the major site of protein synthesis and folding in the cell. ER-associated degradation (ERAD) and unfolded protein response (UPR) are the main mechanisms of ER-mediated cell stress adaptation. Targeting the cell stress response is a promising therapeutic approach in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN: Protein expression levels of valosin-containing protein (VCP), a chief element of ERAD, were measured in peripheral blood samples from in 483 pediatric AML patients using reverse phase protein array methodology. Patients participated in the Children's Oncology Group AAML1031 phase 3 clinical trial that randomized patients to standard chemotherapy (cytarabine (Ara-C), daunorubicin, and etoposide [ADE]) versus ADE plus bortezomib (ADE+BTZ). RESULTS: Low-VCP expression was significantly associated with favorable 5-year overall survival (OS) rate compared to middle-high-VCP expression (81% versus 63%, p < 0.001), independent of additional bortezomib treatment. Multivariable Cox regression analysis identified VCP as independent predictor of clinical outcome. UPR proteins IRE1 and GRP78 had significant negative correlation with VCP. Five-year OS in patients characterized by low-VCP, moderately high-IRE1 and high-GRP78 improved after treatment with ADE+BTZ versus ADE (66% versus 88%, p = 0.026). CONCLUSION AND CLINICAL RELEVANCE: Our findings suggest the potential of the protein VCP as biomarker in prognostication prediction in pediatric AML.


Assuntos
Proteínas de Ciclo Celular , Chaperona BiP do Retículo Endoplasmático , Criança , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Bortezomib/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
12.
Am J Hematol ; 98(8): 1196-1203, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37183966

RESUMO

Reverse transcription polymerase chain reaction (RT-PCR) for BCR::ABL1 is the most common and widely accepted method of measurable residual disease (MRD) assessment in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL); however, RT-PCR may not be an optimal measure of MRD in many cases of Ph+ ALL. We evaluated the clinical impact of a highly sensitive next-generation sequencing (NGS) MRD assay (sensitivity of 10-6 ) and its correlation with RT-PCR for BCR::ABL1 in patients with Ph+ ALL. Overall, 32% of patients had a discordance between MRD assessment by RT-PCR and NGS, and 31% of patients who achieved NGS MRD negativity were PCR+ at the same timepoint. Among eight patients with long-term detectable BCR::ABL1 by PCR, six were PCR+/NGS-. These patients generally had stable PCR levels that persisted despite therapeutic interventions, and none subsequently relapsed; in contrast, patients who were PCR+/NGS+ had more variable PCR values that responded to therapeutic intervention. In a separate cohort of prospectively collected clinical samples, 11 of 65 patients (17%) with Ph+ ALL who achieved NGS MRD negativity had detectable BCR::ABL1 by PCR, and none of these patients relapsed. Relapse-free survival and overall survival were similar in patients who were PCR+/NGS- and PCR-/NGS-, suggesting that PCR for BCR::ABL1 did not provide additional prognostic information in patients who achieved NGS MRD negativity. NGS-based assessment of MRD is prognostic in Ph+ ALL and identifies patients with low-level detectable BCR::ABL1 who are unlikely to relapse nor to benefit from therapeutic interventions.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteínas de Fusão bcr-abl/genética , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Sequenciamento de Nucleotídeos em Larga Escala , Recidiva
14.
Nat Cell Biol ; 25(4): 528-539, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37024683

RESUMO

Upon stimulation by extrinsic stimuli, stem cells initiate a programme that enables differentiation or self-renewal. Disruption of the stem state exit has catastrophic consequences for embryogenesis and can lead to cancer. While some elements of this stem state switch are known, major regulatory mechanisms remain unclear. Here we show that this switch involves a global increase in splicing efficiency coordinated by DNA methyltransferase 3α (DNMT3A), an enzyme typically involved in DNA methylation. Proper activation of murine and human embryonic and haematopoietic stem cells depends on messenger RNA processing, influenced by DNMT3A in response to stimuli. DNMT3A coordinates splicing through recruitment of the core spliceosome protein SF3B1 to RNA polymerase and mRNA. Importantly, the DNA methylation function of DNMT3A is not required and loss of DNMT3A leads to impaired splicing during stem cell turnover. Finally, we identify the spliceosome as a potential therapeutic target in DNMT3A-mutated leukaemias. Together, our results reveal a modality through which DNMT3A and the spliceosome govern exit from the stem state towards differentiation.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Animais , Humanos , Camundongos , Diferenciação Celular/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Células-Tronco Hematopoéticas/metabolismo
15.
Blood Cancer J ; 13(1): 57, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37088806

RESUMO

TP53-mutant acute myeloid leukemia (AML) respond poorly to currently available treatments, including venetoclax-based drug combinations and pose a major therapeutic challenge. Analyses of RNA sequencing and reverse phase protein array datasets revealed significantly lower BAX RNA and protein levels in TP53-mutant compared to TP53-wild-type (WT) AML, a finding confirmed in isogenic CRISPR-generated TP53-knockout and -mutant AML. The response to either BCL-2 (venetoclax) or MCL-1 (AMG176) inhibition was BAX-dependent and much reduced in TP53-mutant compared to TP53-WT cells, while the combination of two BH3 mimetics effectively activated BAX, circumventing survival mechanisms in cells treated with either BH3 mimetic, and synergistically induced cell death in TP53-mutant AML and stem/progenitor cells. The BH3 mimetic-driven stress response and cell death patterns after dual inhibition were largely independent of TP53 status and affected by apoptosis induction. Co-targeting, but not individual targeting of BCL-2 and MCL-1 in mice xenografted with TP53-WT and TP53-R248W Molm13 cells suppressed both TP53-WT and TP53-mutant cell growth and significantly prolonged survival. Our results demonstrate that co-targeting BCL-2 and MCL-1 overcomes BAX deficiency-mediated resistance to individual BH3 mimetics in TP53-mutant cells, thus shifting cell fate from survival to death in TP53-deficient and -mutant AML. This concept warrants clinical evaluation.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Animais , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Proteína X Associada a bcl-2/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Antineoplásicos/uso terapêutico
16.
Proc Natl Acad Sci U S A ; 120(16): e2220134120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036970

RESUMO

Bromo- and extra-terminal domain inhibitors (BETi) have exhibited therapeutic activities in many cancers. However, the mechanisms controlling BETi response and resistance are not well understood. We conducted genome-wide loss-of-function CRISPR screens using BETi-treated KMT2A-rearranged (KMT2A-r) cell lines. We revealed that Speckle-type POZ protein (SPOP) gene (Speckle Type BTB/POZ Protein) deficiency caused significant BETi resistance, which was further validated in cell lines and xenograft models. Proteomics analysis and a kinase-vulnerability CRISPR screen indicated that cells treated with BETi are sensitive to GSK3 perturbation. Pharmaceutical inhibition of GSK3 reversed the BETi-resistance phenotype. Based on this observation, a combination therapy regimen inhibiting both BET and GSK3 was developed to impede KMT2A-r leukemia progression in patient-derived xenografts in vivo. Our results revealed molecular mechanisms underlying BETi resistance and a promising combination treatment regimen of ABBV-744 and CHIR-98014 by utilizing unique ex vivo and in vivo KMT2A-r PDX models.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Leucemia , Humanos , Quinase 3 da Glicogênio Sintase/metabolismo , Linhagem Celular Tumoral , Leucemia/tratamento farmacológico , Leucemia/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo
17.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982537

RESUMO

DNA damage response (DNADR) recognition and repair (DDR) pathways affect carcinogenesis and therapy responsiveness in cancers, including leukemia. We measured protein expression levels of 16 DNADR and DDR proteins using the Reverse Phase Protein Array methodology in acute myeloid (AML) (n = 1310), T-cell acute lymphoblastic leukemia (T-ALL) (n = 361) and chronic lymphocytic leukemia (CLL) (n = 795) cases. Clustering analysis identified five protein expression clusters; three were unique compared to normal CD34+ cells. Individual protein expression differed by disease for 14/16 proteins, with five highest in CLL and nine in T-ALL, and by age in T-ALL and AML (six and eleven proteins, respectively), but not CLL (n = 0). Most (96%) of the CLL cases clustered in one cluster; the other 4% were characterized by higher frequencies of deletion 13q and 17p, and fared poorly (p < 0.001). T-ALL predominated in C1 and AML in C5, but both occurred in all four acute-dominated clusters. Protein clusters showed similar implications for survival and remission duration in pediatric and adult T-ALL and AML populations, with C5 doing best in all. In summary, DNADR and DDR protein expression was abnormal in leukemia and formed recurrent clusters that were shared across the leukemias with shared prognostic implications across diseases, and individual proteins showed age- and disease-related differences.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Adulto , Criança , Leucemia Mieloide Aguda/genética , Análise Serial de Proteínas , Leucemia Linfocítica Crônica de Células B/genética , Proteínas/genética , Doença Crônica , Dano ao DNA/genética
18.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982555

RESUMO

Proteomic DNA Damage Repair (DDR) expression patterns in Chronic Lymphocytic Leukemia were characterized by quantifying and clustering 24 total and phosphorylated DDR proteins. Overall, three protein expression patterns (C1-C3) were identified and were associated as an independent predictor of distinct patient overall survival outcomes. Patients within clusters C1 and C2 had poorer survival outcomes and responses to fludarabine, cyclophosphamide, and rituxan chemotherapy compared to patients within cluster C3. However, DDR protein expression patterns were not prognostic in more modern therapies with BCL2 inhibitors or a BTK/PI3K inhibitor. Individually, nine of the DDR proteins were prognostic for predicting overall survival and/or time to first treatment. When looking for other proteins that may be associated with or influenced by DDR expression patterns, our differential expression analysis found that cell cycle and adhesion proteins were lower in clusters compared to normal CD19 controls. In addition, cluster C3 had a lower expression of MAPK proteins compared to the poor prognostic patient clusters thus implying a potential regulatory connection between adhesion, cell cycle, MAPK, and DDR signaling in CLL. Thus, assessing the proteomic expression of DNA damage proteins in CLL provided novel insights for deciphering influences on patient outcomes and expanded our understanding of the potential complexities and effects of DDR cell signaling.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteômica , Dano ao DNA , Receptores com Domínio Discoidina/genética
19.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982970

RESUMO

The survival of malignant leukemic cells is dependent on DNA damage repair (DDR) signaling. Reverse Phase Protein Array (RPPA) data sets were assembled using diagnostic samples from 810 adult and 500 pediatric acute myelogenous leukemia (AML) patients and were probed with 412 and 296 strictly validated antibodies, respectively, including those detecting the expression of proteins directly involved in DDR. Unbiased hierarchical clustering identified strong recurrent DDR protein expression patterns in both adult and pediatric AML. Globally, DDR expression was associated with gene mutational statuses and was prognostic for outcomes including overall survival (OS), relapse rate, and remission duration (RD). In adult patients, seven DDR proteins were individually prognostic for either RD or OS. When DDR proteins were analyzed together with DDR-related proteins operating in diverse cellular signaling pathways, these expanded groupings were also highly prognostic for OS. Analysis of patients treated with either conventional chemotherapy or venetoclax combined with a hypomethylating agent revealed protein clusters that differentially predicted favorable from unfavorable prognoses within each therapy cohort. Collectively, this investigation provides insight into variable DDR pathway activation in AML and may help direct future individualized DDR-targeted therapies in AML patients.


Assuntos
Leucemia Mieloide Aguda , Humanos , Adulto , Criança , Prognóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Reparo do DNA/genética , Dano ao DNA , Receptores com Domínio Discoidina/genética
20.
bioRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-36824825

RESUMO

B-cell lineage acute lymphoblastic leukemia (B-ALL) is comprised of diverse molecular subtypes and while transcriptional and DNA methylation profiling of B-ALL subtypes has been extensively examined, the accompanying chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq for 10 B-ALL molecular subtypes in primary ALL cells from 154 patients. Comparisons with B-cell progenitors identified candidate B-ALL cell-of-origin and AP-1-associated cis-regulatory rewiring in B-ALL. Cis-regulatory rewiring promoted B-ALL-specific gene regulatory networks impacting oncogenic signaling pathways that perturb normal B-cell development. We also identified that over 20% of B-ALL accessible chromatin sites exhibit strong subtype enrichment, with transcription factor (TF) footprint profiling identifying candidate TFs that maintain subtype-specific chromatin architectures. Over 9000 inherited genetic variants were further uncovered that contribute to variability in chromatin accessibility among individual patient samples. Overall, our data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic variants which promote unique gene regulatory networks that contribute to transcriptional differences among B-ALL subtypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA