Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047759

RESUMO

Moolooite, Cu(C2O4)·nH2O, is a typical biomineral which forms due to Cu-bearing minerals coming into contact with oxalic acid sources such as bird guano deposits or lichens, and no single crystals of moolooite of either natural or synthetic origin have been found yet. This paper reports, for the first time, on the preparation of single crystals of a synthetic analog of the copper-oxalate biomineral moolooite, and on the refinement of its crystal structure from the single-crystal X-ray diffraction (SCXRD) data. Along with the structural model, the SCXRD experiment showed the significant contribution of diffuse scattering to the overall diffraction data, which comes from the nanostructural disorder caused by stacking faults of Cu oxalate chains as they lengthen. This type of disorder should result in the chains breaking, at which point the H2O molecules may be arranged. The amount of water in the studied samples did not exceed 0.15 H2O molecules per formula unit. Apparently, the mechanism of incorporation of H2O molecules governs the absence of good-quality single crystals in nature and a lack of them in synthetic experiments: the more H2O content in the structure, the stronger the disorder will be. A description of the crystal structure indicates that the ideal structure of the Cu oxalate biomineral moolooite should not contain H2O molecules and should be described by the Cu(C2O4) formula. However, it was shown that natural and synthetic moolooite crystals contain a significant portion of "structural" water, which cannot be ignored. Considering the substantially variable amount of water, which can be incorporated into the crystal structure, the formula Cu(C2O4)·nH2O for moolooite is justified.


Assuntos
Cobre , Ácido Oxálico , Cobre/química , Difração de Raios X , Cristalografia por Raios X , Água
2.
Materials (Basel) ; 15(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36233986

RESUMO

Through the combination of low-temperature hydrothermal synthesis and room-temperature evaporation, a synthetic phase similar in composition and crystal structure to the Earth's most complex mineral, ewingite, was obtained. The crystal structures of both natural and synthetic compounds are based on supertetrahedral uranyl-carbonate nanoclusters that are arranged according to the cubic body-centered lattice principle. The structure and composition of the uranyl carbonate nanocluster were refined using the data on synthetic material. Although the stability of natural ewingite is higher (according to visual observation and experimental studies), the synthetic phase can be regarded as a primary and/or metastable reaction product which further re-crystallizes into a more stable form under environmental conditions.

3.
Chem Heterocycl Compd (N Y) ; 57(4): 442-447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054132

RESUMO

The reaction of 5-aryl-NH-tetrazoles with adamantan-1-ol in concentrated sulfuric acid proceeds regioselectively with the formation of the corresponding 2-adamantyl-5-aryl-2H-tetrazoles. Nitration of these compounds leads to 2-(adamantan-1-yl)-5-(3-nitroaryl)-2Htetrazoles. The structures and composition of the obtained novel 2-adamantyl-5-aryltetrazoles were proven by IR spectroscopy, 1H and 13C NMR spectroscopy, high-resolution mass spectrometry, and also by X-ray structural analysis. According to the simultaneous thermal analysis data, the obtained compounds are thermally stable up to a temperature of about 150°C. In vitro studies have shown that some of the 2-adamantyl-5-aryltetrazoles exhibit moderate inhibitory activity against influenza A (H1N1) virus. The antiviral selectivity index (SI) of 2-[2-(adamantan-1-yl)-2H-tetrazol-5-yl]-6-bromo-4-nitroaniline is significantly higher (SI 11) than that of the reference drug rimantadine (SI 5). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10593-021-02931-5.

4.
Molecules ; 26(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805160

RESUMO

Averievite-type compounds with the general formula (MX)[Cu5O2(TO4)], where M = alkali metal, X = halogen and T = P, V, have been synthesized by crystallization from gases and structurally characterized for six different compositions: 1 (M = Cs; X = Cl; T = P), 2 (M = Cs; X = Cl; T = V), 3 (M = Rb; X = Cl; T = P), 4 (M = K; X = Br; T = P), 5 (M = K; X = Cl; T = P) and 6 (M = Cu; X = Cl; T = V). The crystal structures of the compounds are based upon the same structural unit, the layer consisting of a kagome lattice of Cu2+ ions and are composed from corner-sharing (OCu4) anion-centered tetrahedra. Each tetrahedron shares common corners with three neighboring tetrahedra, forming hexagonal rings, linked into the two-dimensional [O2Cu5]6+ sheets parallel to (001). The layers are interlinked by (T5+O4) tetrahedra (T5+ = V, P) attached to the bases of the oxocentered tetrahedra in a "face-to-face" manner. The resulting electroneutral 3D framework {[O2Cu5](T5+O4)2}0 possesses channels occupied by monovalent metal cations M+ and halide ions X-. The halide ions are located at the centers of the hexagonal rings of the kagome nets, whereas the metal cations are in the interlayer space. There are at least four different structure types of the averievite-type compounds: the P-3m1 archetype, the 2 × 2 × 1 superstructure with the P-3 space group, the monoclinically distorted 1 × 1 × 2 superstructure with the C2/c symmetry and the low-temperature P21/c superstructure with a doubled unit cell relative to the high-temperature archetype. The formation of a particular structure type is controlled by the interplay of the chemical composition and temperature. Changing the chemical composition may lead to modification of the structure type, which opens up the possibility to tune the geometrical parameters of the kagome net of Cu2+ ions.

5.
J Org Chem ; 85(14): 9001-9014, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32506914

RESUMO

The applicability of an intramolecular Nicholas reaction for the preparation of 10-membered O- and N-enediynes fused to indole, 1,2,3-triazole, and isocoumarin was investigated. The general approach to acyclic enediyne precursors fused to heterocycles includes inter- and intramolecular buta-1,3-diyne cyclizations with the formation of iodoethynylheterocycles, followed by Sonogashira coupling. The nature of both a heterocycle and a nucleophilic group affects the possibility of a 10-membered ring closure by the Nicholas reaction. Among oxacycles, an isocoumarin-fused enediyne was obtained. In the case of O-enediyne annulated with indole, instead of the formation of a 10-membered cycle, BF3-promoted addition of an OH-group to the proximal triple bond at the C3 position afforded dihydrofuryl-substituted indole. For 1,2,3-triazole-fused analogues, using NH-Ts as a nucleophilic functional group allowed obtaining 10-membered azaenediyne, while the substrate with a hydroxyl group gave only traces of the desired 10-membered oxacycle. An improved method for the deprotection of Co-complexes of cyclic enediynes using tetrabutylammonium fluoride in an acetone/water mixture and the investigation of the 10-membered enediynes' reactivity in the Bergman cyclization are also reported. In the solid state, all synthesized iodoethynylheterocycles were found to be involved in halogen bond (XB) formation with either O or N atoms as XB acceptors.

6.
Dalton Trans ; 49(2): 356-367, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31825414

RESUMO

Hexaiododiplatinates(ii) bearing ammonium and phosphonium cations, [R4N]2[Pt2(µ-I)2I4] {R = Et (1) and n-Bu (2)} and [R3PR1]2[Pt2(µ-I)2I4] {R = n-Bu and R1 = n-Bu (3); R = Ph and R1 = Ph (4); R = Ph and R1 = CH2Ph (5)}, were synthesized and characterized by high resolution ESI-MS, 1H, 13C{1H}, 31P{1H}, and 195Pt NMR spectroscopy, Fourier transform infrared and Raman spectroscopy, X-ray diffraction (XRD), X-ray powder diffraction, and also electrostatic surface potential calculations. Complexes 1-3 were cocrystallized with halogen bond (XB) donors based on organic iodides featuring electron withdrawing groups {REWGIs: 1,3,5-triiodotrifluorobenzene (1,3,5-FIB), iodopentafluorobenzene (IPFB), 1,4-diiodotetrafluorobenzene (1,4-FIB), and tetraiodoethylene (C2I4)} to give crystalline adducts 1·2(1,3,5-FIB), 1·2IPFB, 2·2(1,4-FIB), and 3·C2I4. Inspection of the XRD data of the obtained adducts revealed the presence, in all four structures, of intermolecular REWGII-Pt XBs between the iodine centers of REWGIs and the terminal iodide ligands of [Pt2(µ-I)2I4]2- anions, where the latter act as rectangular XB-accepting synthons forming XBs with two, three, and even four Pt-Iterminal ligands. The results of Hirshfeld molecular surface analysis and density functional theory (DFT) calculations (the M06/DZP-DKH level of theory) followed by topological analysis of the electron density distribution within the framework of Bader's approach (QTAIM) confirmed the existence of the detected XBs, and their estimated energies vary from 2.2 to 4.7 kcal mol-1.

7.
Molecules ; 24(13)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252657

RESUMO

An efficient approach towards the synthesis of 6-aryl-4-azidocinnolines was developed with the aim of exploring the photophysical properties of 6-aryl-4-azidocinnolines and their click reaction products with alkynes, 6-aryl-4-(1,2,3-1H-triazol-1-yl)cinnolines. The synthetic route is based on the Richter-type cyclization of 2-ethynyl-4-aryltriazenes with the formation of 4-bromo-6-arylcinnolines and nucleophilic substitution of a bromine atom with an azide functional group. The developed synthetic approach is tolerant to variations of functional groups on the aryl moiety. The resulting azidocinnolines were found to be reactive in both CuAAC with terminal alkynes and SPAAC with diazacyclononyne, yielding 4-triazolylcinnolines. It was found that 4-azido-6-arylcinnolines possess weak fluorescent properties, while conversion of the azido function into a triazole ring led to complete fluorescence quenching. The lack of fluorescence in triazoles could be explained by the non-planar structure of triazolylcinnolines and a possible photoinduced electron transfer (PET) mechanism. Among the series of 4-triazolylcinnoline derivatives a compound bearing hydroxyalkyl substituent at triazole ring was found to be cytotoxic to HeLa cells.


Assuntos
Antineoplásicos/síntese química , Compostos Heterocíclicos com 2 Anéis/síntese química , Triazóis/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Química Click , Células HeLa , Compostos Heterocíclicos com 2 Anéis/química , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Estrutura Molecular , Triazóis/química , Triazóis/farmacologia
8.
J Org Chem ; 84(6): 3524-3536, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30810032

RESUMO

An effective strategy was developed for the synthesis of new 2,2'-bipyridine ligands, symmetrical and unsymmetrical 6,6'-binicotinates, and 2,2'-bipyridine-5-carboxylates, from 4-propargylisoxazoles. The synthesis of symmetrical 2,2'-disubstituted 6,6'-binicotinates was achieved using the Eglinton reaction of 5-methoxy-4-(prop-2-yn-1-yl)isoxazoles with Cu(OAc)2, followed by Fe(NTf2)2/Au(NTf2) tBuXPhos-catalyzed isomerization of the so-formed mixture of isoxazole/azirine-substituted biacetylenic intermediates. Unsymmetrical 2,2'-disubstituted 6,6'-binicotinates were prepared via a copper-free Sonogashira coupling of 5-methoxy-4-(prop-2-yn-1-yl)isoxazoles with 6-bromonicotinates to give methyl 6-(3-(5-methoxyisoxazol-4-yl)prop-1-ynyl)pyridine-3-carboxylates, followed by a transformation of the propargylisoxazole moiety of the adduct into the pyridine fragment under Fe(II)/Au(I) relay catalysis conditions. 6-(Pyrid-2-yl)nicotinates were synthesized by a Stille-type coupling of 2-(tributylstannyl)pyridine with 6-bromonicotinates. Several cyclopalladated complexes of a new series of 6,6'-binicotinates and 2,2'-bipyridine-5-carboxylates and the homoleptic Cu(I) complex were synthesized in high yields.

9.
Acta Crystallogr C Struct Chem ; 74(Pt 5): 529-533, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726460

RESUMO

A novel polymorph of RbCuCl3 (rubidium copper trichloride), denoted ℇ-RbCuCl3, has been prepared by chemical vapour transport (CVT) from a mixture of CuO, CuCl2, SeO2 and RbCl. The new polymorph crystallizes in the orthorhombic space group C2221. The crystal structure is based on an octahedral framework of the 4H perovskite type. The Rb+ and Cl- ions form a four-layer closest-packing array with an ABCB sequence. The Cu2+ cations reside in octahedral cavities with a typical [4 + 2]-Jahn-Teller-distorted coordination, forming four short and two long Cu-Cl bonds. ℇ-RbCuCl3 is the most structurally complex and most dense among all currently known RbCuCl3 polymorphs, which allows us to suggest that it is a high-pressure phase, which is unstable under ambient conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA