Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 98: 105830, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641231

RESUMO

Local drug delivery systems based on bioceramics ensure safe and effective treatment of bone defects and anticancer therapy. A promising drug delivery scaffold material for bone treatment applications is diopside (CaMgSi2O6) which is bioactive, degradable, and possesses drug-release ability. Currently, in vitro assessment of drug release from biomaterials is performed mostly on a 2D cell monolayer. However, to interpret and integrate biochemical signals, cells need a 3D microenvironment that provides cell-cell and cell-extracellular matrix interactions. In this regard, 3D cell models are gaining popularity. In this work, we proposed the protocol for evaluation of the effect of doxorubicin released from diopside on MG-63 cells and primary human fibroblasts in 3D culture conditions. Tissue spheroids with similar diameters were incubated with doxorubicin-loaded diopside for 72 h, the amount of diopside was calculated in accordance with the required doxorubicin concentration. We demonstrated that doxorubicin is gradually released from diopside and exhibits an activity similar to that of the pure drug at the same total concentration. It is important to note that doxorubicin was more potent on MG-63 spheroids compared to HF spheroids, which confirmed the reliability of spheroids as 3D models of tumor and healthy tissues.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Liberação Controlada de Fármacos , Esferoides Celulares , Humanos , Doxorrubicina/farmacologia , Esferoides Celulares/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Fibroblastos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos
2.
Materials (Basel) ; 15(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36556566

RESUMO

Herein we report a simple and easily scalable method for fabricating ZnO/h-BN composites with tunable photoluminescence (PL) characteristics. The h-BN support significantly enhances the ultraviolet (UV) emission of ZnO nanoparticles (NPs), which is explained by the ZnO/h-BN interaction and the change in the electronic structure of the ZnO surface. When h-BN NPs are replaced with h-BN microparticles, the PL in the UV region increases, which is accompanied by a decrease in visible light emission. The dependence of the PL properties of ZnO NPs on the thickness of h-BN carriers, observed for the first time, is explained by a change in the dielectric constant of the support. A quantum chemical analysis of the influence of the h-BN thickness on the electron density redistribution at the wZnO/h-BN interface and on the optical properties of the wZnO/h-BN composites was carried out. Density functional theory (DFT) calculations show the appearance of hybridization at the h-BN/wZnO interface and an increase in the intensity of absorption peaks with an increase in the number of h-BN layers. The obtained results open new possibilities for controlling the properties of ZnO/h-BN heterostructures for various optical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA