Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Fungi (Basel) ; 10(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667929

RESUMO

Peptides play an essential role in plant development and immunity. Filipendula ulmaria, belonging to the Rosaceae family, is a medicinal plant which exhibits valuable pharmacological properties. F. ulmaria extracts in vitro inhibit the growth of a variety of plant and human pathogens. The role of peptides in defense against pathogens in F. ulmaria remains unknown. The objective of this study was to explore the repertoire of antimicrobial (AMPs) and defense-related signaling peptide genes expressed by F. ulmaria in response to infection with Bipolaris sorokiniana using RNA-seq. Transcriptomes of healthy and infected plants at two time points were sequenced on the Illumina HiSeq500 platform and de novo assembled. A total of 84 peptide genes encoding novel putative AMPs and signaling peptides were predicted in F. ulmaria transcriptomes. They belong to known, as well as new, peptide families. Transcriptional profiling in response to infection disclosed complex expression patterns of peptide genes and identified both up- and down-regulated genes in each family. Among the differentially expressed genes, the vast majority were down-regulated, suggesting suppression of the immune response by the fungus. The expression of 13 peptide genes was up-regulated, indicating their possible involvement in triggering defense response. After functional studies, the encoded peptides can be used in the development of novel biofungicides and resistance inducers.

2.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955519

RESUMO

Antimicrobial peptides (AMPs) constitute an essential part of the plant immune system. They are regarded as alternatives to conventional antibiotics and pesticides. In this study, we have identified the γ-core motifs, which are associated with antimicrobial activity, in 18 AMPs from grasses and assayed their antimicrobial properties against nine pathogens, including yeasts affecting humans, as well as plant pathogenic bacteria and fungi. All the tested peptides displayed antimicrobial properties. We discovered a number of short AMP-derived peptides with high antimicrobial activity both against human and plant pathogens. For the first time, antimicrobial activity was revealed in the peptides designed from the 4-Cys-containing defensin-like peptides, whose role in plant immunity has remained unknown, as well as the knottin-like peptide and the C-terminal prodomain of the thionin, which points to the direct involvement of these peptides in defense mechanisms. Studies of the mode of action of the eight most active γ-core motif peptides on yeast cells using staining with propidium iodide showed that all of them induced membrane permeabilization leading to cell lysis. In addition to identification of the antimicrobial determinants in plant AMPs, this work provides short candidate peptide molecules for the development of novel drugs effective against opportunistic fungal infections and biopesticides to control plant pathogens.


Assuntos
Peptídeos Antimicrobianos , Poaceae , Antibacterianos/farmacologia , Bactérias , Humanos , Peptídeos/farmacologia , Plantas
3.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613926

RESUMO

The γ-core motif is a structural element shared by most host antimicrobial peptides (AMPs), which is supposed to contribute to their antimicrobial properties. In this review, we summarized the available data on the γ-core peptides of plant AMPs. We describe γ-core peptides that have been shown to exhibit inhibitory activity against plant and human bacterial and fungal pathogens that make them attractive scaffolds for the development of novel anti-infective agents. Their advantages include origin from natural AMP sequences, broad-spectrum and potent inhibitory activity, and cost-effective production. In addition, some γ-core peptides combine antimicrobial and immunomodulatory functions, thus broadening the spectrum of practical applications. Some act synergistically with antimycotics and fungicides, so combinations of peptides with conventionally used antifungal agents can be suggested as an effective strategy to reduce the doses of potentially harmful chemicals. The presented information will pave the way for the design of novel antimicrobials on the basis of γ-core motif peptides, which can find application in medicine and the protection of crops from diseases.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Peptídeos/farmacologia , Peptídeos/química , Antifúngicos/farmacologia , Plantas , Agricultura
4.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072144

RESUMO

Cysteine-rich peptides (CRPs) play an important role in plant physiology. However, their role in resistance induced by biogenic elicitors remains poorly understood. Using whole-genome transcriptome sequencing and our CRP search algorithm, we analyzed the repertoire of CRPs in tomato Solanum lycopersicum L. in response to Fusarium oxysporum infection and elicitors from F. sambucinum. We revealed 106 putative CRP transcripts belonging to different families of antimicrobial peptides (AMPs), signaling peptides (RALFs), and peptides with non-defense functions (Major pollen allergen of Olea europaea (Ole e 1 and 6), Maternally Expressed Gene (MEG), Epidermal Patterning Factor (EPF)), as well as pathogenesis-related proteins of families 1 and 4 (PR-1 and 4). We discovered a novel type of 10-Cys-containing hevein-like AMPs named SlHev1, which was up-regulated both by infection and elicitors. Transcript profiling showed that F. oxysporum infection and F. sambucinum elicitors changed the expression levels of different overlapping sets of CRP genes, suggesting the diversification of functions in CRP families. We showed that non-specific lipid transfer proteins (nsLTPs) and snakins mostly contribute to the response of tomato plants to the infection and the elicitors. The involvement of CRPs with non-defense function in stress reactions was also demonstrated. The results obtained shed light on the mode of action of F. sambucinum elicitors and the role of CRP families in the immune response in tomato.


Assuntos
Cisteína , Resistência à Doença/genética , Peptídeos/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Biologia Computacional/métodos , Sequência Conservada , Cisteína/química , Cisteína/genética , Resistência à Doença/imunologia , Perfilação da Expressão Gênica , Solanum lycopersicum/imunologia , Modelos Moleculares , Peptídeos/química , Doenças das Plantas/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformação Proteica , Transcriptoma
5.
Pathogens ; 8(4)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694319

RESUMO

Non-specific lipid-transfer proteins (nsLTPs) represent a family of plant antimicrobial peptides (AMPs) implicated in diverse physiological processes. However, their role in induced resistance (IR) triggered by non-pathogenic fungal strains and their metabolites is poorly understood. In this work, using RNA-seq data and our AMP search pipeline, we analyzed the repertoire of nsLTP genes in the wheat Triticum kiharae and studied their expression in response to Fusarium oxysporum infection and treatment with the intracellular metabolites of Fusarium sambucinum FS-94. A total of 243 putative nsLTPs were identified, which were classified into five structural types and characterized. Expression analysis showed that 121 TkLTPs including sets of paralogs with identical mature peptides displayed specific expression patters in response to different treatments pointing to their diverse roles in resistance development. We speculate that upregulated nsLTP genes are involved in protection due to their antimicrobial activity or signaling functions. Furthermore, we discovered that in IR-displaying plants, a vast majority of nsLTP genes were downregulated, suggesting their role as negative regulators of immune mechanisms activated by the FS-94 elicitors. The results obtained add to our knowledge of the role of nsLTPs in IR and provide candidate molecules for genetic engineering of crops to enhance disease resistance.

6.
PeerJ ; 7: e6125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30643692

RESUMO

Antimicrobial peptides (AMPs) are the main components of the plant innate immune system. Defensins represent the most important AMP family involved in defense and non-defense functions. In this work, global RNA sequencing and de novo transcriptome assembly were performed to explore the diversity of defensin-like (DEFL) genes in the wheat Triticum kiharae and to study their role in induced resistance (IR) mediated by the elicitor metabolites of a non-pathogenic strain FS-94 of Fusarium sambucinum. Using a combination of two pipelines for DEFL mining in transcriptome data sets, as many as 143 DEFL genes were identified in T. kiharae, the vast majority of them represent novel genes. According to the number of cysteine residues and the cysteine motif, wheat DEFLs were classified into ten groups. Classical defensins with a characteristic 8-Cys motif assigned to group 1 DEFLs represent the most abundant group comprising 52 family members. DEFLs with a characteristic 4-Cys motif CX{3,5}CX{8,17}CX{4,6}C named group 4 DEFLs previously found only in legumes were discovered in wheat. Within DEFL groups, subgroups of similar sequences originated by duplication events were isolated. Variation among DEFLs within subgroups is due to amino acid substitutions and insertions/deletions of amino acid sequences. To identify IR-related DEFL genes, transcriptional changes in DEFL gene expression during elicitor-mediated IR were monitored. Transcriptional diversity of DEFL genes in wheat seedlings in response to the fungus Fusarium oxysporum, FS-94 elicitors, and the combination of both (elicitors + fungus) was demonstrated, with specific sets of up- and down-regulated DEFL genes. DEFL expression profiling allowed us to gain insight into the mode of action of the elicitors from F. sambucinum. We discovered that the elicitors up-regulated a set of 24 DEFL genes. After challenge inoculation with F. oxysporum, another set of 22 DEFLs showed enhanced expression in IR-displaying seedlings. These DEFLs, in concert with other defense molecules, are suggested to determine enhanced resistance of elicitor-pretreated wheat seedlings. In addition to providing a better understanding of the mode of action of the elicitors from FS-94 in controlling diseases, up-regulated IR-specific DEFL genes represent novel candidates for genetic transformation of plants and development of pathogen-resistant crops.

7.
Biochimie ; 135: 15-27, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28038935

RESUMO

Being perfectly adapted to diverse environments, chickweed (Stellaria media (L.) Vill), a ubiquitous garden weed, grows widely in Europe and North America. As opposed to the model plants, many weeds, and S. media in particular, have been poorly studied, although they are likely to contain promising components of immunity and novel resistance genes. In this study, for the first time RNA-seq analysis of healthy and infected with Fusarium oxysporum chickweed seedlings, as well as de novo transcriptome assembly and annotation, are presented. Note, this research is focused on antimicrobial peptides (AMPs), the major components of plant immune system. Using custom software developed earlier, 145 unique putative AMPs (pAMPs) including defensins, thionins, hevein-like peptides, snakins, alpha-hairpinins, LTPs, and cysteine-rich peptides with novel cysteine motifs were predicted. Furthermore, changes in AMP expression profile in response to fungal infection were traced. In addition, the comparison of chickweed AMP repertoire with those of other Caryophyllaceae plants whose transcriptomes are presently available is made. As a result, alpha-hairpinins and hevein-like peptides which display characteristic modular structure appear to be specific AMPs distinguishing S. media from Dianthus caryophyllus, Silene vulgaris, and Silene latifolia. Finally, revealing several AMPs with proven antimicrobial activity gives opportunity to conclude that the presented method of AMP repertoire analysis reveals highly active AMPs playing vital role in plant immunity.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Stellaria/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Proteínas de Plantas/metabolismo
8.
Biochimie ; 116: 125-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26196691

RESUMO

A novel peptide named SmAMP3 was isolated from leaves of common chickweed (Stellaria media L.) by a combination of acidic extraction and a single-step reversed-phase HPLC and sequenced. The peptide is basic and cysteine-rich, consists of 35 amino acids, and contains three disulphide bridges. Homology search revealed that SmAMP3 belongs to the family of hevein-like antimicrobial peptides carrying a conserved chitin-binding site. Efficient binding of chitin by SmAMP3 was proved by in vitro assays. Molecular modeling confirmed conservation of the chitin-binding module in SmAMP3 locating the variable amino acid residues to the solvent-exposed loops of the molecule. The peptide exhibits potent antifungal activity against important plant pathogens in the micromolar range, although it is devoid of antibacterial activity at concentrations below 10 µM. As judged by chromatographic behavior and mass spectrometric data, the peptide is constitutively expressed in above-ground organs and seeds of S. media plants, thus representing an important player in the preformed branch of the plant immune system.


Assuntos
Antifúngicos/química , Folhas de Planta/química , Stellaria/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Quitina/metabolismo , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia
9.
FEBS J ; 280(15): 3594-608, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23702306

RESUMO

A novel family of antifungal peptides was discovered in the wheat Triticum kiharae Dorof. et Migusch. Two members of the family, designated Tk-AMP-X1 and Tk-AMP-X2, were completely sequenced and shown to belong to the α-hairpinin structural family of plant peptides with a characteristic C1XXXC2-X(n)-C3XXXC4 motif. The peptides inhibit the spore germination of several fungal pathogens in vitro. cDNA and gene cloning disclosed unique structure of genes encoding Tk-AMP-X peptides. They code for precursor proteins of unusual multimodular structure, consisting of a signal peptide, several α-hairpinin (4-Cys) peptide domains with a characteristic cysteine pattern separated by linkers and a C-terminal prodomain. Three types of precursor proteins, with five, six or seven 4-Cys peptide modules, were found in wheat. Among the predicted family members, several peptides previously isolated from T. kiharae seeds were identified. Genes encoding Tk-AMP-X precursors have no introns in the protein-coding regions and are upregulated by fungal pathogens and abiotic stress, providing conclusive evidence for their role in stress response. A combined PCR-based and bioinformatics approach was used to search for related genes in the plant kingdom. Homologous genes differing in the number of peptide modules were discovered in phylogenetically-related Triticum and Aegilops species, including polyploid wheat genome donors. Association of the Tk-AMP-X genes with A, B/G or D genomes of hexaploid wheat was demonstrated. Furthermore, Tk-AMP-X-related sequences were shown to be widespread in the Poaceae family among economically important crops, such as barley, rice and maize.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Plântula/genética , Triticum/genética , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Sequência Conservada , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Proteólise , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Estresse Fisiológico
10.
Biochimie ; 94(4): 1009-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22227377

RESUMO

Hevein-like plant defense peptides WAMP-1a/b with a unique 10-Cys motif are found in the wheat Triticum kiharae seeds. Three different wamp genomic and cDNA sequences were derived from T. kiharae; no introns were spotted in the protein-coding regions of the genes. The deduced Wamp precursor proteins consist of a signal peptide, mature peptide (WAMP) and C-terminal prosequence. Origin of WAMPs from class I/IV chitinases via deletion of the catalytic domain is proposed based on homology between their genes. Genome screening of several cereals and goatgrasses from the genera Triticum and Aegilops was performed. No wamp homologues were identified in Triticum monococcum (A(b)A(b)) or Triticum urartu (A(u)A(u)), diploid species with an A genome. To the contrary, highly homologous wamp genes were discovered in hexaploid Triticum aestivum (A(u)A(u)BBDD) and T. kiharae (A(b)A(b)GGDD), and the putative genome donors Triticum timopheevii (A(b)A(b)GG), Aegilops speltoides (BB), and Aegilops tauschii (DD), providing strong evidence for the ancient origin of these genes and their association with the B, D and G genomes. The role of T. kiharae WAMPs in biotic stress is suggested by their antifungal activity and increased accumulation of wamp transcripts in response to phytopathogen challenge. Differential reaction to fungi was demonstrated: Fusarium oxysporum enhanced expression of wamp genes, whereas Aspergillus niger induced transcription reprogramming and alternative polyadenylation. WAMPs participate in plant response also to abiotic stress. Although no changes were noted at elevated or decreased temperatures, high salt concentrations enhanced wamp expression, the first indication of hevein-type peptide participation in salinity stress.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Evolução Molecular , Lectinas de Plantas/genética , Estresse Fisiológico , Triticum/genética , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Quitinases/genética , Clonagem Molecular , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Estrutura Terciária de Proteína , Salinidade , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Triticum/metabolismo , Triticum/fisiologia
11.
FEBS J ; 276(15): 4266-75, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19583772

RESUMO

Two forms of a novel antimicrobial peptide (AMP), named WAMP-1a and WAMP-1b, that differ by a single C-terminal amino acid residue and belong to a new structural type of plant AMP were purified from seeds of Triticum kiharae Dorof. et Migusch. Although WAMP-1a and WAMP-1b share similarity with hevein-type peptides, they possess 10 cysteine residues arranged in a unique cysteine motif which is distinct from those described previously for plant AMPs, but is characteristic of the chitin-binding domains of cereal class I chitinases. An unusual substitution of a serine for a glycine residue in the chitin-binding domain was detected for the first time in hevein-like polypeptides. Recombinant WAMP-1a was successfully produced in Escherichia coli. This is the first case of high-yield production of a cysteine-rich plant AMP from a synthetic gene. Assays of recombinant WAMP-1a activity showed that the peptide possessed high broad-spectrum inhibitory activity against diverse chitin-containing and chitin-free pathogens, with IC(50) values in the micromolar range. The discovery of a new type of AMP active against structurally dissimilar microorganisms implies divergent modes of action and discloses the complexity of plant-microbe interactions.


Assuntos
Antifúngicos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Lectinas de Plantas/isolamento & purificação , Sementes/química , Triticum/química , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sítios de Ligação , Cromatografia de Afinidade , Cromatografia em Gel , Dados de Sequência Molecular , Lectinas de Plantas/química , Lectinas de Plantas/genética , Lectinas de Plantas/farmacologia , Proteínas Recombinantes/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
12.
Biochimie ; 90(6): 939-46, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18358845

RESUMO

The origin of polyploid wheat genomes has been the subject of numerous studies and is the key problem in wheat phylogeny. Different diploid species have been supposed to donate genomes to tetraploid and hexaploid wheat species. To shed light on phylogenetic relationships between the presumable A genome donors and hexaploid wheat species we have applied a new approach: the comparison of defensins from diploid Triticum species, Triticum boeoticum Boiss. and Triticum urartu Thum. ex Gandil., with previously characterized Triticum kiharae defensins [T.I. Odintsova et al., Biochimie 89 (2007) 605-612]. Defensins were isolated by acidic extraction of seeds followed by three-step chromatographic separation. Isolated defensins were identified by molecular masses using MALDI-TOF mass spectrometry and N-terminal sequencing. For the first time, we have shown that T. urartu defensins are more similar to those of the hexaploid wheat than T. boeoticum defensins, although variation among samples collected in different regions of the world was revealed. Our results clearly demonstrate that T. urartu of the Asian origin contributed the A genome to polyploid wheat species.


Assuntos
Defensinas/química , Triticum/classificação , Sequência de Aminoácidos , Defensinas/classificação , Defensinas/isolamento & purificação , Genoma de Planta , Dados de Sequência Molecular , Filogenia , Poliploidia , Sementes/química , Triticum/química , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA