Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
JCO Precis Oncol ; 8: e2300539, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484211

RESUMO

PURPOSE: Paired tumor-germline sequencing can identify somatic variants for targeted therapy and germline pathogenic variants (GPVs) causative of hereditary cancer/tumor predisposition syndromes. It is unknown how patients/families in pediatric oncology use information about an identified GPV. We assessed recall of germline results and actions taken on the basis of findings. METHODS: We completed phone surveys with patients (and/or their parent) with GPVs identified via a single academic medical center's paired tumor-germline sequencing study. Seven hundred forty pediatric (aged 0-25 years) oncology patients were enrolled in this sequencing study between May 2012 and August 2021. Ninety-six participants (13.0%) had at least one GPV identified and were therefore eligible for this survey. The parent/guardian (for patients younger than 18 years or deceased patients) or patients themselves (if 18 years or older) were contacted. Survey topics included germline result recall, experience with genetic counseling, changes to patient's cancer treatment/screening, sharing of results with family members, and lifestyle changes. RESULTS: Fifty-three surveys (response rate, 55.2%) were completed between October 2021 and June 2022. Thirty-seven (69.8%) respondents correctly recalled the identified GPV. Discussing results with a genetic counselor (P = .0001), having a GPV related to the cancer/tumor diagnosis (P = .002), and non-Hispanic White race/ethnicity (P = .02) were associated with accurate recall. Twenty-five respondents (47.2%) reported a change in the child's cancer treatment and/or screening recommendations, 17 respondents (32.1%) made a lifestyle change on the basis of the results, and 44 respondents (83.0%) shared results with at least one family member. CONCLUSION: While most respondents remembered that a GPV was identified in the patient, some did not recall having a GPV found, and others recalled germline findings incorrectly. Future work may determine patient/family preferences for timing/method of result return to optimize patient recall and use of germline results.


Assuntos
Predisposição Genética para Doença , Síndromes Neoplásicas Hereditárias , Humanos , Criança , Predisposição Genética para Doença/genética , Oncologia , Mutação em Linhagem Germinativa/genética , Células Germinativas
2.
Sci Transl Med ; 13(615): eabf7860, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644147

RESUMO

High-grade gliomas with arginine or valine substitutions of the histone H3.3 glycine-34 residue (H3.3G34R/V) carry a dismal prognosis, and current treatments, including radiotherapy and chemotherapy, are not curative. Because H3.3G34R/V mutations reprogram epigenetic modifications, we undertook a comprehensive epigenetic approach using ChIP sequencing and ChromHMM computational analysis to define therapeutic dependencies in H3.3G34R/V gliomas. Our analyses revealed a convergence of epigenetic alterations, including (i) activating epigenetic modifications on histone H3 lysine (K) residues such as H3K36 trimethylation (H3K36me3), H3K27 acetylation (H3K27ac), and H3K4 trimethylation (H3K4me3); (ii) DNA promoter hypomethylation; and (iii) redistribution of repressive histone H3K27 trimethylation (H3K27me3) to intergenic regions at the leukemia inhibitory factor (LIF) locus to drive increased LIF abundance and secretion by H3.3G34R/V cells. LIF activated signal transducer and activator of transcription 3 (STAT3) signaling in an autocrine/paracrine manner to promote survival of H3.3G34R/V glioma cells. Moreover, immunohistochemistry and single-cell RNA sequencing from H3.3G34R/V patient tumors revealed high STAT3 protein and RNA expression, respectively, in tumor cells with both inter- and intratumor heterogeneity. We targeted STAT3 using a blood-brain barrier­penetrable small-molecule inhibitor, WP1066, currently in clinical trials for adult gliomas. WP1066 treatment resulted in H3.3G34R/V tumor cell toxicity in vitro and tumor suppression in preclinical mouse models established with KNS42 cells, SJ-HGGx42-c cells, or in utero electroporation techniques. Our studies identify the LIF/STAT3 pathway as a key epigenetically driven and druggable vulnerability in H3.3G34R/V gliomas. This finding could inform development of targeted, combination therapies for these lethal brain tumors.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Epigênese Genética , Glioma/genética , Glicina , Histonas/metabolismo , Humanos , Camundongos
3.
Artigo em Inglês | MEDLINE | ID: mdl-33608379

RESUMO

Choroid plexus tumors are rare pediatric neoplasms ranging from low-grade papillomas to overtly malignant carcinomas. They are commonly associated with Li-Fraumeni syndrome and germline TP53 mutations. Choroid plexus carcinomas associated with Li-Fraumeni syndrome are less responsive to chemotherapy, and there is a need to avoid radiation therapy leading to poorer outcomes and survival. Malignant progression from choroid plexus papillomas to carcinomas is exceedingly rare with only a handful of cases reported, and the molecular mechanisms of this progression remain elusive. We report a case of malignant transformation of choroid plexus papilloma to carcinoma in a 7-yr-old male with a germline TP53 mutation in which we present an analysis of molecular changes that might have led to the progression based on the next-generation genetic sequencing of both the original choroid plexus papilloma and the subsequent choroid plexus carcinoma. Chromosomal aneuploidy was significant in both lesions with mostly gains present in the papilloma and additional significant losses in the carcinoma. The chromosomal loss that occurred, in particular loss of Chromosome 13, resulted in the losses of two critical tumor suppressor genes, RB1 and BRCA2, which might play a possible role in the observed malignant transformation.


Assuntos
Carcinoma/genética , Neoplasias do Plexo Corióideo/genética , Predisposição Genética para Doença/genética , Papiloma do Plexo Corióideo/genética , Proteína BRCA2/genética , Carcinoma/diagnóstico por imagem , Carcinoma/patologia , Criança , Neoplasias do Plexo Corióideo/diagnóstico por imagem , Neoplasias do Plexo Corióideo/patologia , Neoplasias do Plexo Corióideo/terapia , Aberrações Cromossômicas , Cromossomos Humanos Par 13 , Mutação em Linhagem Germinativa , Humanos , Síndrome de Li-Fraumeni , Masculino , Sistema Nervoso , Papiloma do Plexo Corióideo/diagnóstico por imagem , Papiloma do Plexo Corióideo/patologia , Papiloma do Plexo Corióideo/terapia , Proteínas de Ligação a Retinoblastoma/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética
4.
Pediatr Blood Cancer ; 64(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27862886

RESUMO

Pediatric spinal oligodendrogliomas are rare and aggressive tumors. They do not share the same molecular features of adult oligodendroglioma, and no previous reports have examined the molecular features of pediatric spinal oligodendroglioma. We present the case of a child with a recurrent spinal anaplastic oligodendroglioma. We performed whole exome (paired tumor and germline DNA) and transcriptome (tumor RNA) sequencing, which revealed somatic mutations in NF1 and FGFR1. These data allowed us to explore potential personalized therapies for this patient and expose molecular drivers that may be involved in similar cases.


Assuntos
Deleção de Genes , Proteínas de Neoplasias , Neurofibromina 1 , Oligodendroglioma , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Neoplasias da Coluna Vertebral , Pré-Escolar , Exoma , Feminino , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neurofibromina 1/biossíntese , Neurofibromina 1/genética , Oligodendroglioma/diagnóstico por imagem , Oligodendroglioma/genética , Oligodendroglioma/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/biossíntese , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Neoplasias da Coluna Vertebral/genética , Neoplasias da Coluna Vertebral/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA