Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 159: 106710, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39216336

RESUMO

Ballistic gelatin has been extensively used in ballistics research for decades, but calibration standards were established on limited datasets, and only few studies have attempted to recreate these experiments with biological tissues. Recent studies have demonstrated better biofidelity with 20% ordnance ballistic gelatin, but researchers have discredited the use of synthetic gelatin claiming different behavior than ordnance gelatin. To investigate the use of synthetic clear gelatin as an acceptable surrogate of biological tissue, depth of penetration was compared between low-velocity impacts of various projectiles into porcine tissue (n = 192), post-mortem human subjects (n = 29), and Clear Ballistics synthetic gelatin (n = 39). The predicted depth of penetration of the 0.177" steel BB (38.1 mm) was consistent with the manufacturer's calibration standard (31.75-44.45 mm) and within calibration bounds of recently proposed empirical equations. Compared to impacts in biological tissue, synthetic gelatin demonstrated the least variability in depth of penetration (R2 = 0.96). Using ANCOVA, velocity was a significant covariate (p < 0.001), and there were no significant differences in normalized depth of penetration over density between porcine tissue, post-mortem human subjects, and 20% synthetic gelatin (p = 0.22). Ultimately, this study confirmed the use of 20% synthetic gelatin as an acceptable tissue simulant using standard calibration methods for use in future ballistic studies.


Assuntos
Gelatina , Gelatina/química , Calibragem , Suínos , Humanos , Animais , Masculino , Teste de Materiais , Feminino , Balística Forense , Pessoa de Meia-Idade , Fenômenos Mecânicos , Adulto , Idoso
2.
Mil Med ; 189(Supplement_3): 517-524, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160835

RESUMO

INTRODUCTION: With similar prevalence to injuries from fires, stings, and natural disasters, soft tissue injuries may occur from fireworks, industrial accidents, or other explosives. Surgeons are less familiar with treating high-velocity penetration from small debris, which may increase the chance of infection and subsequent fatality. Penetration risk curves have been developed to predict V50, the velocity with 50% probability of penetration, for various sized projectiles. However, there has been limited research using nonmetallic materials to achieve lower density projectiles less than 1 g cm-2, such as sand or rocks. MATERIAL AND METHODS: To emulate the size and density of these energized particles, 14 ball bearings of stainless steel, silicon nitride, or Delrin acetal plastic ranging from 1.59 mm (1/16") to 9.53 mm (3/8") with sectional densities between 0.3 g cm-2 and 5 g cm-2 were launched toward porcine legs at a range of velocities to determine the penetration thresholds. High-speed videography was captured laterally at 40 kHz and impact velocity was captured using a physics-based tracking software. A generalized linear model with repeated measures and a logit link function was used to predict probability of penetration for each projectile. A total of 600 impacts were conducted to achieve at least 15 penetrating impacts for each projectile over a range of velocities. RESULTS: Higher impact velocities were required to penetrate the skin as sectional density of the projectile decreased, and the relationship between velocity and sectional density exhibited an exponential relationship (V50, $ = 184.6*S{D^{ - 0.385}}$, R2 = 0.95) with substantial change for nonlinearity in sectional densities ranging from 0.3 g cm-2 to 1 g cm-2. Compared to previous studies, the empirical relationship was consistent in the linear region (2-5 g cm-2), and novel experimentation filled in the gaps for sectional densities less than 1 g cm-2, which expressed more nonlinearity than previously estimated. For low-density projectiles with diameters of 1.59 (1/16") or 3.18 (1/8"), 32 impacts were lodged into the epidermis but did not penetrate through the dermis; however, penetration was defined as displacement into or through the dermis. CONCLUSIONS: These experimental results may be used to develop and validate finite element simulations of low-density projectile impacts to address complex, multivariate loading conditions for the development of protective clothing to reduce wounding and subsequent infection rates.


Assuntos
Traumatismos por Explosões , Animais , Suínos , Traumatismos por Explosões/fisiopatologia , Extremidades/lesões
3.
Mil Med ; 189(Supplement_3): 659-664, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160873

RESUMO

INTRODUCTION: While the 44-mm clay penetration criterion was developed in the 1970s for soft body armor applications, and the researchers acknowledged the need to conduct additional tests, the same behind the armor blunt trauma displacement limit is used for both soft and hard body armor evaluations and design considerations. Because the human thoraco-abdominal contents are heterogeneous, have different skeletal coverage, and have different functional requirements, the same level of penetration limit does not imply the same level of protection. It is important to determine the regional responses of different thoraco-abdominal organs to better describe human tolerance and improve the current behind armor blunt trauma standard. The purpose of this study was to report on the methods, procedures, and data collected from swine. MATERIALS AND METHODS: Live swine tests were conducted after obtaining approvals from the local institution and the Army Care and Use Review Office of the U.S. Department of Defense. Trachea tubes and an intravenous line were introduced before administering anesthesia. Pressure transducers were inserted into the lungs and aorta. An indenter simulating the backface deformation profiles produced by body armor from military-relevant ballistics to human cadavers was used to deliver impact loading to the liver region. A triaxial accelerometer was included in the indenter design. The animals were monitored for 6 hours, necropsies were performed, and injuries were identified. Biomechanical data of the energy, velocity, deflection, viscous criterion, force, and impulse variables were obtained for each test. RESULTS: Peak accelerations, velocities, deflections, forces, impulse, and energies ranged from 897 to 5,808 g, 21 to 59 m/s, 1.96 to 8.87 cm, 2.3 to 13.1 kN, 1.1 to 7.1 Ns, and 58 to 387 J, respectively. The peak viscous criterion ranged from 0.8 to 5.8 m/s. All animals survived the 6-hour survival period. Three animals responded with liver lacerations while the remaining 4 did not have any injuries. CONCLUSION: The experimental design based on parallel tests with whole body human cadavers and cadaver swine was found to be successful in delivering controlled impacts to the liver region of live swine and reproducing liver injuries. Previously used biomechanical measures as potential candidates for injury criteria development were obtained. Using this proven model, tests with additional samples are needed to develop injury risk curves for liver impacts and obtain regional (liver) injury criteria.


Assuntos
Fígado , Ferimentos não Penetrantes , Animais , Suínos , Ferimentos não Penetrantes/fisiopatologia , Fígado/lesões , Modelos Animais , Modelos Animais de Doenças , Humanos
4.
Ann Biomed Eng ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922366

RESUMO

Evaluating Behind Armor Blunt Trauma (BABT) is a critical step in preventing non-penetrating injuries in military personnel, which can result from the transfer of kinetic energy from projectiles impacting body armor. While the current NIJ Standard-0101.06 standard focuses on preventing excessive armor backface deformation, this standard does not account for the variability in impact location, thorax organ and tissue material properties, and injury thresholds in order to assess potential injury. To address this gap, Finite Element (FE) human body models (HBMs) have been employed to investigate variability in BABT impact conditions by recreating specific cases from survivor databases and generating injury risk curves. However, these deterministic analyses predominantly use models representing the 50th percentile male and do not investigate the uncertainty and variability inherent within the system, thus limiting the generalizability of investigating injury risk over a diverse military population. The DoD-funded I-PREDICT Future Naval Capability (FNC) introduces a probabilistic HBM, which considers uncertainty and variability in tissue material and failure properties, anthropometry, and external loading conditions. This study utilizes the I-PREDICT HBM for BABT simulations for three thoracic impact locations-liver, heart, and lower abdomen. A probabilistic analysis of tissue-level strains resulting from a BABT event is used to determine the probability of achieving a Military Combat Incapacitation Scale (MCIS) for organ-level injuries and the New Injury Severity Score (NISS) is employed for whole-body injury risk evaluations. Organ-level MCIS metrics show that impact at the heart can cause severe injuries to the heart and spleen, whereas impact to the liver can cause rib fractures and major lacerations in the liver. Impact at the lower abdomen can cause lacerations in the spleen. Simulation results indicate that, under current protection standards, the whole-body risk of injury varies between 6 and 98% based on impact location, with the impact at the heart being the most severe, followed by impact at the liver and the lower abdomen. These results suggest that the current body armor protection standards might result in severe injuries in specific locations, but no injuries in others.

5.
Mil Med ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877895

RESUMO

INTRODUCTION: Warfighters are issued hard body armor designed to defeat ballistic projectiles. The resulting backface deformation can injure different thoracoabdominal organs. Developed over decades ago, the behind armor blunt impact criterion of maximum 44 mm depth in clay continues to be used independent of armor type or impact location on the thoracoabdominal region covered by the armor. Because thoracoabdominal components have different energy absorption capabilities, their mode of failures and mechanical properties are different. These considerations underscore the lack of effectiveness of using the single standard to cover all thoracoabdominal components to represent the same level of injury risk. The objective of this pilot study is to conduct cardiac impact tests with a live animal model and analyze biomechanical injury candidate metrics for behind armor blunt trauma applications. MATERIALS AND METHODS: Live swine tests were conducted after obtaining approvals from the U.S. DoD. Trachea tubes. An intravenous line were introduced into the swine before administering anesthesia. Pressure transducers were inserted into lungs and aorta. An indenter simulating backface deformation profiles produced by body armor from military-relevant ballistics to human cadavers delivered impact to the heart region. The approved test protocol included 6-hour monitoring and necropsies. Indenter accelerometer signals were processed to compute the velocity and deflection, and their peak magnitudes were obtained. The deflection-time signal was normalized with respect to chest depth along the impact axis. The peak magnitude of the viscous criterion, kinetic energy, force, momentum and stiffness were obtained. RESULTS: Out of the 8 specimens, 2 were sham controls. The mean total body mass and soft tissue thickness at the impact site were 81.1 ± 4.1 kg and 3.8 ± 1.1 cm. The peak velocities ranged from 30 to 59 m/s, normalized deflections ranged from 15 to 21%, and energies ranged from 105 to 407 J. The range in momentum and stiffness were 7.0 to 13.9 kg-m/s and 22.3 to 79.9 N/m. The maximum forces and impulse data ranged from 2.9 to 11.7 kN and 1.9 to 5.8 N-s. The peak viscous criterion ranged from 2.0 to 5.3 m/s. One animal did not sustain any injuries, 2 had cardiac injuries, and others had lung and skeletal injuries. CONCLUSIONS: The present study applied blunt impact loads to the live swine cardiac region and determined potential candidate injury metrics for characterization. The sample size of 6 swine produced injuries ranging from none to pure skeletal to pure organ trauma. The viscous criterion metric associated with the response of the animal demonstrated a differing pattern than other variables with increasing velocity. These findings demonstrate that our live animal experimental design can be effectively used with testing additional samples to develop behind armor blunt injury criteria for cardiac trauma in the form of risk curves. Injury criteria obtained for cardiac trauma can be used to enhance the effectiveness of the body armor, reduce morbidity and mortality, and improve warfighter readiness in combat operations.

6.
J Biomech Eng ; 146(11)2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38884993

RESUMO

Blunt force trauma remains a serious threat to many populations and is commonly seen in motor vehicle crashes, sports, and military environments. Effective design of helmets and protective armor should consider biomechanical tolerances of organs in which they intend to protect and require accurate measurements of deformation as a primary injury metric during impact. To overcome challenges found in velocity and displacement measurements during blunt impact using an integrated accelerometer and two-dimensional (2D) high-speed video, three-dimensional (3D) digital image correlation (DIC) measurements were taken and compared to the accepted techniques. A semispherical impactor was launched at impact velocities from 14 to 20 m/s into synthetic ballistic gelatin to simulate blunt impacts observed in behind armor blunt trauma (BABT), falls, and sports impacts. Repeated measures Analysis of Variance resulted in no significant differences in maximum displacement (p = 0.10), time of maximum displacement (p = 0.21), impact velocity (p = 0.13), and rebound velocity (p = 0.21) between methods. The 3D-DIC measurements demonstrated equal or improved percent difference and low root-mean-square deviation compared to the accepted measurement techniques. Therefore, 3D-DIC may be utilized in BABT and other blunt impact applications for accurate 3D kinematic measurements, especially when an accelerometer or 2D lateral camera analysis is impractical or susceptible to error.


Assuntos
Imageamento Tridimensional , Fenômenos Biomecânicos , Ferimentos não Penetrantes/diagnóstico por imagem , Ferimentos não Penetrantes/fisiopatologia , Fenômenos Mecânicos , Humanos
7.
J Biomech Eng ; 145(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301262

RESUMO

Body armor is used to protect the human from penetrating injuries, however, in the process of defeating a projectile, the back face of the armor can deform into the wearer at extremely high rates. This deformation can cause a variety of soft and hard tissue injuries. Finite element modeling (FEM) represents one of the best tools to predict injuries from this high-rate compression mechanism. However, the validity of a model is reliant on accurate material properties for biological tissues. In this study, we measured the stress-strain response of thoraco-abdominal tissue during high-rate compression (1000 and 1900 s-1) using a split Hopkinson pressure bar (SHPB). High-rate material properties of porcine adipose, heart, spleen, and stomach tissue were characterized. At a strain rate of 1000 s-1, adipose (E = 4.7 MPa) had the most compliant stress-strain response, followed by spleen (E = 9.6 MPa), and then heart tissue (E = 13.6 MPa). At a strain rate of 1900 s-1, adipose (E = 7.3 MPa) had the most compliant stress-strain response, followed by spleen (E = 10.7 MPa), heart (E = 14.1 MPa), and stomach (E = 32.6 MPa) tissue. Only adipose tissue demonstrated a consistent rate dependence for these high strain rates, with a stiffer response at 1900 s-1 compared to 1000 s-1. However, comparison of all these tissues to previously published quasi-static and intermediate dynamic experiments revealed a strong rate dependence with increasing stress response from quasi-static to dynamic to high strain rates. Together, these findings can be used to develop a more accurate finite element model of high-rate compression injuries.


Assuntos
Tecido Adiposo , Animais , Suínos , Humanos , Estresse Mecânico , Pressão
8.
Forensic Sci Med Pathol ; 19(1): 34-43, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36100841

RESUMO

Secondary blast injuries may result from high-velocity projectile fragments which ultimately increase medical costs, reduce active work time, and decrease quality of life. The role of skin penetration requires more investigation in energy absorption and surface mechanics for implementation in computational ballistic models. High-speed ballistic penetration studies have not considered penetrating and non-penetrating biomechanical properties of the skin, including radial wave displacement, resultant surface wave speed, or projectile material influence. A helium-pressurized launcher was used to accelerate 3/8″ (9.525 mm) diameter spherical projectiles toward seventeen whole porcine legs from seven pigs (39.53 ± 7.28 kg) at projectile velocities below and above V50. Projectiles included a mix of materials: stainless steel (n = 26), Si3N4 (n = 24), and acetal plastic (n = 24). Tracker video analysis software was used to determine projectile velocity at impact from the perpendicular view and motion of the tissue displacement wave from the in-line view. Average radial wave displacement and surface wave speed were calculated for each projectile material and categorized by penetrating or non-penetrating impacts. Two-sample t-tests determined that non-penetrating projectiles resulted in significantly faster surface wave speeds in porcine skin for stainless steel (p = 0.002), plastic (p = 0.004), and Si3N4 ball bearings (p = 0.014), while ANOVA determined significant differences in radial wave displacement and surface wave speed between projectile materials. Surface wave speed was used to quantify mechanical properties of the skin including elastic modulus, shear modulus, and bulk modulus during ballistic impact, which may be implemented to simulate accurate deformation behavior in computational impact models.


Assuntos
Qualidade de Vida , Aço Inoxidável , Animais , Suínos , Plásticos , Software
9.
J Forensic Leg Med ; 90: 102395, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35863258

RESUMO

Buried blast explosions create small projectiles which can become lodged in the tissue of personnel as far away as hundreds of meters. Without appropriate treatment, these lodged projectiles can become a source of infection and prolonged injury to soldiers in modern combat. Human cadavers can be used as surrogates for living humans for ballistic penetration testing, but human cadavers are frozen during transport and storage. The process of freezing and thawing the tissue before testing may change the biomechanical properties of the tissue. The goal of the current study was to understand penetration threshold differences between fresh, refrigerated, and frozen tissue and investigate factors that may contribute to these differences. A custom-built pneumatic launcher was used to accelerate 3/16″ stainless steel ball bearings toward porcine legs that were either tested fresh, following refrigerated storage, or following frozen storage. A generalized linear mixed model, accounting for within-animal dependence, owing to repeated observations, was found to be the most appropriate for these data and was used for analysis. The "generalized" model accommodated non-continuous observations, provided a straight-forward way to implement the repeated measures, and provided a risk estimate for projectile penetration. Both storage condition (p = 0.48) and leg (p = 0.07) were shown to be not significant and the confidence intervals for those variables were overlapping. As all covariates were found to be non-significant, a single model containing all impacts was used to develop a V50, or velocity at which 50% of impacts are expected to penetrate. From this model, 50% probability of penetration occurs at 137.3 m/s with 95% confidence intervals at 132.0 and 144.0 m/s. In this study, the fresh legs and previously frozen legs allowed penetration at similar velocities indicating that previously frozen legs were acceptable surrogates for fresh legs. This study only compared the penetration threshold in tissues that had been stored in differing conditions. To truly study penetration, more conditions will need to be studied including the effects of projectile mass and material, the effects of projectile shape, and the effects of clothing or protective layers on penetration threshold.


Assuntos
Explosões , Perna (Membro) , Animais , Cadáver , Humanos , Modelos Lineares , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA