RESUMO
Membrane transporters mediate the passage of molecules across membranes and are essential for cellular function. While the transmembrane region of these proteins is responsible for substrate transport, often the cytoplasmic regions are required for modulating their activity. However, it can be difficult to obtain atomic-resolution descriptions of these autoregulatory domains by classical structural biology techniques, especially if they lack a single, defined structure. The betaine permease, BetP, a homotrimer, is a prominent and well-studied example of a membrane protein whose autoregulation depends on cytoplasmic N- and C-terminal segments. These domains sense and transduce changes in K+ concentration and in lipid bilayer properties caused by osmotic stress. However, structural data for these terminal domains is incomplete, which hinders a clear description of the molecular mechanism of autoregulation. Here we used microsecond-scale molecular simulations of the BetP trimer to compare reported conformations of the 45-amino-acid long C-terminal tails. The simulations provide support for the idea that the conformation derived from electron microscopy (EM) data represents a more stable global orientation of the C-terminal segment under downregulating conditions while also providing a detailed molecular description of its dynamics and highlighting specific interactions with lipids, ions, and neighboring transporter subunits. A missing piece of the molecular puzzle is the N-terminal segment, whose dynamic nature has prevented structural characterization. Using Rosetta to generate ensembles of de novo conformations in the context of the EM-derived structure robustly identifies two features of the N-terminal tail, namely 1) short helical elements and 2) an orientation that would confine potential interactions to the protomer in the counterclockwise direction (viewed from the cytoplasm). Since each C-terminal tail only contacts the protomer in the clockwise direction, these results indicate an intricate interplay between the three protomers of BetP in the downregulated protein and a multidirectionality that may facilitate autoregulation of transport.
Assuntos
Simportadores , Subunidades Proteicas/metabolismo , Proteínas de Bactérias/química , Modelos Moleculares , Proteínas de Membrana/metabolismo , HomeostaseRESUMO
Mechanistic understanding of dynamic membrane proteins such as transporters, receptors, and channels requires accurate depictions of conformational ensembles, and the manner in which they interchange as a function of environmental factors including substrates, lipids, and inhibitors. Spectroscopic techniques such as electron spin resonance (ESR) pulsed electron-electron double resonance (PELDOR), also known as double electron-electron resonance (DEER), provide a complement to atomistic structures obtained from x-ray crystallography or cryo-EM, since spectroscopic data reflect an ensemble and can be measured in more native solvents, unperturbed by a crystal lattice. However, attempts to interpret DEER data are frequently stymied by discrepancies with the structural data, which may arise due to differences in conditions, the dynamics of the protein, or the flexibility of the attached paramagnetic spin labels. Recently, molecular simulation techniques such as EBMetaD have been developed that create a conformational ensemble matching an experimental distance distribution while applying the minimal possible bias. Moreover, it has been proposed that the work required during an EBMetaD simulation to match an experimentally determined distribution could be used as a metric with which to assign conformational states to a given measurement. Here, we demonstrate the application of this concept for a sodium-coupled transport protein, BetP. Because the probe, protein, and lipid bilayer are all represented in atomic detail, the different contributions to the work, such as the extent of protein backbone movements, can be separated. This work therefore illustrates how ranking simulations based on EBMetaD can help to bridge the gap between structural and biophysical data and thereby enhance our understanding of membrane protein conformational mechanisms.
Assuntos
Proteínas de Bactérias/química , Simportadores/química , Proteínas de Bactérias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Simulação de Dinâmica Molecular , Simportadores/metabolismoRESUMO
BACKGROUND: Structural evidences with functional corroborations have revealed distinct features of lipid-protein interactions especially in channels and receptors. Many membrane embedded transporters are also known to require specific lipids for their functions and for some of them cellular and biochemical data suggest tight regulation by the lipid bilayer. However, molecular details on lipid-protein interactions in transporters are sparse since lipids are either depleted from the detergent solubilized transporters in three-dimensional crystals or not readily resolved in crystal structures. Nevertheless the steady increase in the progress of transporter structure determination contributed more examples of structures with resolved lipids. SCOPE OF REVIEW: This review gives an overview on transporter structures in complex with lipids reported to date and discusses commonly encountered difficulties in the identification of functionally significant lipid-protein interactions based on those structures and functional in vitro data. Recent structures provided molecular details into regulation mechanism of transporters by specific lipids. The review highlights common findings and conserved patterns for distantly related transporter families to draw a more general picture on the regulatory role of lipid-protein interactions. MAJOR CONCLUSIONS: Several common themes of the manner in which lipids directly influence membrane-mediated folding, oligomerization and structure stability can be found. Especially for LeuT-like fold transporters similarities in structurally resolved lipid-protein interactions suggest a common way in which transporter conformations are affected by lipids even in evolutionarily distinct transporters. Lipids appear to play an additional role as joints mechanically reinforcing the inverted repeat topology, which is a major determinant in the alternating access mechanism of secondary transporters. GENERAL SIGNIFICANCE: This review brings together and adds to the repertoire of knowledge on lipid-protein interactions of functional significance presented in structures of membrane transporters. Knowledge of specific lipid-binding sites and modes of lipid influence on these proteins not only accomplishes the molecular description of transport cycle further, but also sheds light into localization dependent differences of transporter function. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Estrutura Terciária de Proteína , Animais , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Ligação ProteicaRESUMO
Bilayer lipids contribute to the stability of membrane transporters and are crucially involved in their proper functioning. However, the molecular knowledge of how surrounding lipids affect membrane transport is surprisingly limited and despite its general importance is rarely considered in the molecular description of a transport mechanism. One reason is that only few atomic resolution structures of channels or transporters reveal a functional interaction with lipids, which are difficult to detect in X-ray structures per se. Overcoming these difficulties, we report here on a new structure of the osmotic stress-regulated betaine transporter BetP in complex with anionic lipids. This lipid-associated BetP structure is important in the molecular understanding of osmoregulation due to the strong dependence of activity regulation in BetP on the presence of negatively charged lipids. We detected eight resolved palmitoyl-oleoyl phosphatidyl glycerol (PG) lipids mimicking parts of the membrane leaflets and interacting with key residues in transport and regulation. The lipid-protein interactions observed here in structural detail in BetP provide molecular insights into the role of lipids in osmoregulated secondary transport.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Betaína/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Corynebacterium glutamicum/enzimologia , Lipídeos/química , Transporte Biológico , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Pressão Osmótica , Estrutura Terciária de Proteína , SimportadoresRESUMO
Sodium-coupled substrate transport plays a central role in many biological processes. However, despite knowledge of the structures of several sodium-coupled transporters, the location of the sodium-binding site(s) often remains unclear. Several of these structures have the five transmembrane-helix inverted-topology repeat, LeuT-like (FIRL) fold, whose pseudosymmetry has been proposed to facilitate the alternating-access mechanism required for transport. Here, we provide biophysical, biochemical, and computational evidence for the location of the two cation-binding sites in the sodium-coupled betaine symporter BetP. A recent X-ray structure of BetP in a sodium-bound closed state revealed that one of these sites, equivalent to the Na2 site in related transporters, is located between transmembrane helices 1 and 8 of the FIRL-fold; here, we confirm the location of this site by other means. Based on the pseudosymmetry of this fold, we hypothesized that the second site is located between the equivalent helices 6 and 3. Molecular dynamics simulations of the closed-state structure suggest this second sodium site involves two threonine sidechains and a backbone carbonyl from helix 3, a phenylalanine from helix 6, and a water molecule. Mutating the residues proposed to form the two binding sites increased the apparent K(m) and K(d) for sodium, as measured by betaine uptake, tryptophan fluorescence, and (22)Na(+) binding, and also diminished the transient currents measured in proteoliposomes using solid supported membrane-based electrophysiology. Taken together, these results provide strong evidence for the identity of the residues forming the sodium-binding sites in BetP.
Assuntos
Proteínas de Transporte/metabolismo , Sódio/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cristalografia por Raios X , Proteínas da Membrana Plasmática de Transporte de GABA , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Homologia de Sequência de AminoácidosRESUMO
Betaine and Na(+) symport has been extensively studied in the osmotically regulated transporter BetP from Corynebacterium glutamicum, a member of the betaine/choline/carnitine transporter family, which shares the conserved LeuT-like fold of two inverted structural repeats. BetP adjusts its transport activity by sensing the cytoplasmic K(+) concentration as a measure for hyperosmotic stress via the osmosensing carboxy-terminal domain. BetP needs to be in a trimeric state for communication between individual protomers through several intratrimeric interaction sites. Recently, crystal structures of inward-facing BetP trimers have contributed to our understanding of activity regulation on a molecular level. Here we report new crystal structures, which reveal two conformationally asymmetric BetP trimers, capturing among them three distinct transport states. We observe a total of four new conformations at once: an outward-open apo and an outward-occluded apo state, and two closed transition states--one in complex with betaine and one substrate-free. On the basis of these new structures, we identified local and global conformational changes in BetP that underlie the molecular transport mechanism, which partially resemble structural changes observed in other sodium-coupled LeuT-like fold transporters, but show differences we attribute to the osmolytic nature of betaine, the exclusive substrate specificity and the regulatory properties of BetP.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Betaína/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Corynebacterium glutamicum/química , Multimerização Proteica , Apoproteínas/química , Apoproteínas/metabolismo , Betaína/química , Sítios de Ligação , Transporte Biológico , Cristalografia por Raios X , Citoplasma/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA , Modelos Moleculares , Periplasma/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Conformação Proteica , Dobramento de Proteína , Sódio/metabolismo , Relação Estrutura-Atividade , SimportadoresRESUMO
The Na(+)-coupled betaine symporter BetP regulates transport activity in response to hyperosmotic stress only in its trimeric state, suggesting a regulatory crosstalk between individual protomers. BetP shares the overall fold of two inverted structurally related five-transmembrane (TM) helix repeats with the sequence-unrelated Na(+)-coupled symporters LeuT, vSGLT, and Mhp1, which are neither trimeric nor regulated in transport activity. Conformational changes characteristic for this transporter fold involve the two first helices of each repeat, which form a four-TM-helix bundle. Here, we identify two ionic networks in BetP located on both sides of the membrane that might be responsible for BetP's unique regulatory behavior by restricting the conformational flexibility of the four-TM-helix bundle. The cytoplasmic ionic interaction network links both first helices of each repeat in one protomer to the osmosensing C-terminal domain of the adjacent protomer. Moreover, the periplasmic ionic interaction network conformationally locks the four-TM-helix bundle between the same neighbor protomers. By a combination of site-directed mutagenesis, cross-linking, and betaine uptake measurements, we demonstrate how conformational changes in individual bundle helices are transduced to the entire bundle by specific inter-helical interactions. We suggest that one purpose of bundle networking is to assist crosstalk between protomers during transport regulation by specifically modulating the transition from outward-facing to inward-facing state.
Assuntos
Proteínas de Bactérias/química , Betaína/química , Proteínas de Transporte/química , Corynebacterium glutamicum/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Cristalografia por Raios X/métodos , Dimerização , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida/métodos , Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Concentração Osmolar , Conformação Proteica , Estrutura Secundária de Proteína , SimportadoresRESUMO
BetP is an Na(+)-coupled betaine-specific transporter of the betaine-choline-carnitine (BCC) transporter family involved in the response to hyperosmotic stress. The crystal structure of BetP revealed an overall fold of two inverted structurally related repeats (LeuT-fold) that BetP shares with other sequence-unrelated Na(+)-coupled symporters. Numerous structures of LeuT-fold transporters in distinct conformational states have contributed substantially to our understanding of the alternating access mechanism of transport. Nevertheless, coupling of substrate and co-transported ion fluxes has not been structurally corroborated to the same extent. We converted BetP by a single-point mutation--glycine to aspartate--into an H(+)-coupled choline-specific transporter and solved the crystal structure of this mutant in complex with choline. The structure of BetP-G153D demonstrates a new inward-facing open conformation for BetP. Choline binding to a location close to the second, low-affinity sodium-binding site (Na2) of LeuT-fold transporters is facilitated by the introduced aspartate. Our data confirm the importance of a cation-binding site in BetP, playing a key role in a proposed molecular mechanism of Na(+) and H(+) coupling in BCC transporters.
Assuntos
Proteínas de Bactérias/metabolismo , Betaína/metabolismo , Proteínas de Transporte/metabolismo , Sódio/metabolismo , Simportadores/metabolismo , Substituição de Aminoácidos/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Cristalografia por Raios X , Íons/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Mutação Puntual , Estrutura Terciária de Proteína , Especificidade por Substrato , Simportadores/genéticaRESUMO
BACKGROUND: Bcl-2 family proteins are key regulators of mitochondrial integrity and comprise both pro- and anti-apoptotic proteins. Bax a pro-apoptotic member localizes as monomers in the cytosol of healthy cells and accumulates as oligomers in mitochondria of apoptotic cells. The Bcl-2 homology-3 (BH3) domain regulates interactions within the family, but regions other than BH3 are also critical for Bax function. Thus, the N-terminus has been variously implicated in targeting to mitochondria, interactions with BH3-only proteins as well as conformational changes linked to Bax activation. The transmembrane (TM) domains (alpha5-alpha6 helices in the core and alpha9 helix in the C-terminus) in Bax are implicated in localization to mitochondria and triggering cytotoxicity. Here we have investigated N-terminus modulation of TM function in the context of regulation by the anti-apoptotic protein Bcl-xL. RESULTS: Deletion of 29 amino acids in the Bax N-terminus (Bax 30-192) caused constitutive accumulation at mitochondria and triggered high levels of cytotoxicity, not inhibited by Bcl-xL. Removal of the TM domains (Bax 30-105) abrogated mitochondrial localization but resulted in Bcl-xL regulated activation of endogenous Bax and Bax-Bak dependent apoptosis. Inclusion of the alpha5-alpha6 helices/TMI domain (Bax 30-146) phenocopied Bax 30-192 as it restored mitochondrial localization, Bcl-xL independent cytotoxicity and was not dependent on endogenous Bax-Bak. Inhibition of function and localization by Bcl-xL was restored in Bax 1-146, which included the TM1 domain. Regardless of regulation by Bcl-xL, all N-terminal deleted constructs immunoprecipitated Bcl-xLand converged on caspase-9 dependent apoptosis consistent with mitochondrial involvement in the apoptotic cascade. Sub-optimal sequence alignments of Bax and Bcl-xL indicated a sequence similarity between the alpha5-alpha6 helices of Bax and Bcl-xL. Alanine substitutions of three residues (T14A-S15A-S16A) in the N-terminus (Bax-Ala3) attenuated regulation by the serine-threonine kinase Akt/PKB but not by Bcl-xL indicative of distinct regulatory mechanisms. CONCLUSION: Collectively, the analysis of Bax deletion constructs indicates that the N-terminus drives conformational changes facilitating inhibition of cytotoxicity by Bcl-xL. We speculate that the TM1 helices may serve as 'structural antagonists' for BH3-Bcl-xL interactions, with this function being regulated by the N-terminus in the intact protein.