Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 187(3): 692-711.e26, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262408

RESUMO

Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest that it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how "Coordinator," a long DNA motif composed of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines the regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, whereas HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in the shared regulation of genes involved in cell-type and positional identities and ultimately shapes facial morphology and evolution.


Assuntos
Proteínas de Ligação a DNA , Desenvolvimento Embrionário , Fatores de Transcrição , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Mesoderma/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Animais , Camundongos , Extremidades/crescimento & desenvolvimento
2.
bioRxiv ; 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37398193

RESUMO

Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how 'Coordinator', a long DNA motif comprised of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, while HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in shared regulation of genes involved in cell-type and positional identities, and ultimately shapes facial morphology and evolution.

3.
Dev Cell ; 57(18): 2181-2203.e9, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36108627

RESUMO

Many developmental signaling pathways have been implicated in lineage-specific differentiation; however, mechanisms that explicitly control differentiation timing remain poorly defined in mammals. We report that murine Hedgehog signaling is a heterochronic pathway that determines the timing of progenitor differentiation. Hedgehog activity was necessary to prevent premature differentiation of second heart field (SHF) cardiac progenitors in mouse embryos, and the Hedgehog transcription factor GLI1 was sufficient to delay differentiation of cardiac progenitors in vitro. GLI1 directly activated a de novo progenitor-specific network in vitro, akin to that of SHF progenitors in vivo, which prevented the onset of the cardiac differentiation program. A Hedgehog signaling-dependent active-to-repressive GLI transition functioned as a differentiation timer, restricting the progenitor network to the SHF. GLI1 expression was associated with progenitor status across germ layers, and it delayed the differentiation of neural progenitors in vitro, suggesting a broad role for Hedgehog signaling as a heterochronic pathway.


Assuntos
Redes Reguladoras de Genes , Proteínas Hedgehog , Animais , Diferenciação Celular/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Proteína GLI1 em Dedos de Zinco/genética
4.
Cell Stem Cell ; 27(5): 765-783.e14, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32991838

RESUMO

Non-coding mutations at the far end of a large gene desert surrounding the SOX9 gene result in a human craniofacial disorder called Pierre Robin sequence (PRS). Leveraging a human stem cell differentiation model, we identify two clusters of enhancers within the PRS-associated region that regulate SOX9 expression during a restricted window of facial progenitor development at distances up to 1.45 Mb. Enhancers within the 1.45 Mb cluster exhibit highly synergistic activity that is dependent on the Coordinator motif. Using mouse models, we demonstrate that PRS phenotypic specificity arises from the convergence of two mechanisms: confinement of Sox9 dosage perturbation to developing facial structures through context-specific enhancer activity and heightened sensitivity of the lower jaw to Sox9 expression reduction. Overall, we characterize the longest-range human enhancers involved in congenital malformations, directly demonstrate that PRS is an enhanceropathy, and illustrate how small changes in gene expression can lead to morphological variation.


Assuntos
Crista Neural , Síndrome de Pierre Robin , Diferenciação Celular , Humanos , Mutação/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição SOX9/genética
5.
Proc Natl Acad Sci U S A ; 117(27): 15712-15723, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32561646

RESUMO

The mechanisms used by embryos to pattern tissues across their axes has fascinated developmental biologists since the founding of embryology. Here, using single-cell technology, we interrogate complex patterning defects and define a Hedgehog (Hh)-fibroblast growth factor (FGF) signaling axis required for anterior mesoderm lineage development during gastrulation. Single-cell transcriptome analysis of Hh-deficient mesoderm revealed selective deficits in anterior mesoderm populations, culminating in defects to anterior embryonic structures, including the pharyngeal arches, heart, and anterior somites. Transcriptional profiling of Hh-deficient mesoderm during gastrulation revealed disruptions to both transcriptional patterning of the mesoderm and FGF signaling for mesoderm migration. Mesoderm-specific Fgf4/Fgf8 double-mutants recapitulated anterior mesoderm defects and Hh-dependent GLI transcription factors modulated enhancers at FGF gene loci. Cellular migration defects during gastrulation induced by Hh pathway antagonism were mitigated by the addition of FGF4 protein. These findings implicate a multicomponent signaling hierarchy activated by Hh ligands from the embryonic node and executed by FGF signals in nascent mesoderm to control anterior mesoderm patterning.


Assuntos
Fator 4 de Crescimento de Fibroblastos/genética , Fator 8 de Crescimento de Fibroblasto/genética , Gastrulação/genética , Proteína GLI1 em Dedos de Zinco/genética , Animais , Padronização Corporal/genética , Linhagem da Célula/genética , Embrião de Galinha , Fatores de Crescimento de Fibroblastos/genética , Gástrula/crescimento & desenvolvimento , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Hedgehog/genética , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Camundongos , Transdução de Sinais/genética , Análise de Célula Única , Transcriptoma/genética
6.
Dev Cell ; 37(2): 127-35, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27093082

RESUMO

Anatomical proportions are robustly maintained in individuals that vary enormously in size, both within a species and between members of related taxa. However, the mechanisms underlying scaling are still poorly understood. We have examined this phenomenon in the context of the patterning of the ventral neural tube in response to a gradient of the morphogen Sonic hedgehog (SHH) in the chick and zebra finch, two species that differ in size during the time of neural tube patterning. We find that scaling is achieved, at least in part, by altering the sensitivity of the target cells to SHH and appears to be achieved by modulating the ratio of the repressive and activating transcriptional regulators, GLI2 and GLI3. This mechanism contrasts with previous experimental and theoretical analyses of morphogenic scaling that have focused on compensatory changes in the morphogen gradient itself.


Assuntos
Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Hedgehog/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tubo Neural/crescimento & desenvolvimento , Neurônios/metabolismo , Animais , Galinhas , Desenvolvimento Embrionário/fisiologia , Indução Embrionária/fisiologia , Medula Espinal/crescimento & desenvolvimento , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Vertebrados/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA