RESUMO
Cerebral cavernous malformations (CCMs) are anomalies of the cerebral vasculature. Loss of the CCM proteins CCM1/KRIT1, CCM2, or CCM3/PDCD10 trigger a MAPK-Krüppel-like factor 2 (KLF2) signaling cascade, which induces a pathophysiological pattern of gene expression. The downstream target genes that are activated by KLF2 are mostly unknown. Here we show that Chromobox Protein Homolog 7 (CBX7), component of the Polycomb Repressive Complex 1, contributes to pathophysiological KLF2 signaling during zebrafish cardiovascular development. CBX7/cbx7a mRNA is strongly upregulated in lesions of CCM patients, and in human, mouse, and zebrafish CCM-deficient endothelial cells. The silencing or pharmacological inhibition of CBX7/Cbx7a suppresses pathological CCM phenotypes in ccm2 zebrafish, CCM2-deficient HUVECs, and in a pre-clinical murine CCM3 disease model. Whole-transcriptome datasets from zebrafish cardiovascular tissues and human endothelial cells reveal a role of CBX7/Cbx7a in the activation of KLF2 target genes including TEK, ANGPT1, WNT9, and endoMT-associated genes. Our findings uncover an intricate interplay in the regulation of Klf2-dependent biomechanical signaling by CBX7 in CCM. This work also provides insights for therapeutic strategies in the pathogenesis of CCM.
RESUMO
Introduction: Spontaneous intracerebral haemorrhage (sICH) is a major cause of morbidity and mortality. Large-scale trials have shown neutral outcomes for surgical interventions. The recent trial suggested functional benefits from surgical intervention. Surgical treatment for sICH is likely increasing. Research question: To determine the incidence of sICH in Southwest Finland, standardized to the European population, and to identify the proportion of large sICH patients eligible for surgery based on previously published trial criteria. We also examined factors associated with outcomes, including the effects of anticoagulant and antithrombotic medications. Material and methods: A retrospective clinical study identified 596 ICH cases treated at Turku University Hospital (2018-2019), of which 286 were supratentorial sICHs. Variables were analysed using a t-test, chi-squared or Fisher's exact test. A multivariate logistic modelling was performed to evaluate outcome differences. Results: The sICH incidence was 29.9/100,000 persons per year, with the highest European population age and sex standardized rates in individuals over 80 years old (110/100,000 males, 142/100,000 females). The incidence of sICH patients meeting surgical criteria was 2.7/100,000 persons per year. Out of 286 patients, 26 were eligible for surgery and had unfavourable outcomes (p = 0.0049). Multivariate analysis indicated a significant decrease in favourable outcomes with warfarin (p = 0.016, OR 0.42) and direct-acting anticoagulants (DOACs) (p = 0.034, OR 0.38), while antithrombotic medications showed no significant effect. Discussion and conclusion: We identified comparable incidence of sICH as European average. A small proportion of sICH cases were identified to be candidates for surgical intervention. Anticoagulants were associated with increased risk of unfavourable outcomes.
RESUMO
BACKGROUND: Brain recovery mechanisms after injuries like aneurysmal subarachnoid hemorrhage (aSAH), ischemic stroke (IS), and traumatic brain injury (TBI) involve brain plasticity, synaptic regeneration, and neuroinflammation. We hypothesized that serum levels of the p75 neurotrophic receptor (p75NTR) and associated signaling proteins, as well as differentially expressed (DE) microRNAs, could predict recovery outcomes irrespective of injury type. METHODS: A prospective patient cohort with ischemic stroke (IS, n = 30), aneurysmal subarachnoid hemorrhage (aSAH, n = 31), and traumatic brain injury (TBI, n = 13) were evaluated (total n = 74). Serum samples were collected at two post-injury intervals (early: 1-3 days, late: 4-8 days), and outcomes were assessed after three months using the modified Rankin Scale (mRS), categorizing outcomes as favorable (mRS 0-3) or unfavorable (mRS 4-6). Six proteins were measured using ELISAs: p75NTR, NGF, sortilin, IL1ß, TNFα, and cyclophilin. DE microRNAs were identified using DESeq2, and their target genes were predicted. Serum molecules between patients with differing outcomes were compared using a Kolmogorov-Smirnov test, 2-tailed t-test and multivariate linear discriminant analysis (LDA). RESULTS: Favorable (n = 46) and unfavorable (n = 28) outcome cohorts were balanced with age and sex (p = 0.25 and 0.63). None of the studied proteins correlated with age. Combinatory LDA of the six protein biomarkers indicated strong prognostic value for favorable outcomes (OR 2.09; AUC = 70.3%, p = 0.0058). MicroRNA expression changes over time were identified in the aSAH, TBI, and IS groups (p < 0.05, FDR corrected). Twenty-three microRNAs were commonly DE across all brain injury groups when comparing favorable and unfavorable outcomes (p < 0.05). LDA of four microRNAs targeting the studied proteins showed high prognostic accuracy (OR 11.7; AUC = 94.1%, p = 0.016). CONCLUSIONS: The combined prognostic microRNA and protein biomarker models demonstrated accurate outcome prognostication across diverse injury types, implying the presence of a common recovery mechanism. DE microRNAs were found to target the studied molecules, suggesting a potential mechanistic role in recovery. Further investigation is warranted to study these molecules in prognostication, as well as therapeutic targets for enhancing recovery.
Assuntos
Biomarcadores , MicroRNA Circulante , Plasticidade Neuronal , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Biomarcadores/sangue , MicroRNA Circulante/sangue , Idoso , Plasticidade Neuronal/fisiologia , Adulto , Hemorragia Subaracnóidea/sangue , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/diagnóstico , Estudos de Coortes , Doenças Neuroinflamatórias/sangue , AVC Isquêmico/sangue , Receptores de Fator de Crescimento Neural/sangue , Receptores de Fator de Crescimento Neural/genética , Recuperação de Função Fisiológica/fisiologia , Prognóstico , Proteínas do Tecido Nervoso , Proteínas Adaptadoras de Transporte VesicularRESUMO
Cerebral cavernous malformation (CCM) is a hemorrhagic cerebrovascular disease where lesions develop in the setting of endothelial mutations of CCM genes, with many cases also harboring somatic PIK3CA gain of function (GOF) mutations. Rapamycin, an mTORC1 inhibitor, inhibited progression of murine CCM lesions driven by Ccm gene loss and Pik3ca GOF, but it remains unknown if rapamycin is beneficial in the absence of induction of Pik3ca GOF. We investigated the effect of rapamycin at three clinically relevant doses on lesion development in the Ccm3-/-PDGFb-icreERPositive murine model of familial CCM disease, without induction of Pik3ca GOF. Lesion burden, attrition, and acute and chronic hemorrhaging were compared between placebo and rapamycin-treated mice. Plasma miRNome was compared to identify potential biomarkers of rapamycin response. Outlier, exceptionally large CCM lesions (> 2 SD above the mean lesion burden) were exclusively observed in the placebo group. Rapamycin, across all dosages, may have prevented the emergence of large outlier lesions. Yet rapamycin also appeared to exacerbate mean lesion burden of surviving mice when outliers were excluded, increased attrition, and did not alter hemorrhage. miR-30c-2-3p, decreased in rapamycin-treated mouse plasma, has gene targets in PI3K/AKT and mTOR signaling. Progression of outlier lesions in a familial CCM model may have been halted by rapamycin treatment, at the potential expense of increased mean lesion burden and increased attrition. If confirmed, this can have implications for potential rapamycin treatment of familial CCM disease, where lesion development may not be driven by PIK3CA GOF. Further studies are necessary to determine specific pathways that mediate potential beneficial and detrimental effects of rapamycin treatment, and whether somatic PIK3CA mutations drive particularly aggressive lesions.
RESUMO
Methylorubrum extorquens DSM13060 is an endosymbiont that lives in the cells of shoot tip meristems. The bacterium is methylotrophic and consumes plant-derived methanol for the production of polyhydroxybutyrate (PHB). The PHB provides protection against oxidative stress for both host and endosymbiont cells through its fragments, methyl-esterified 3-hydroxybutyrate (ME-3HB) oligomers. We evaluated the role of the genes involved in the production of ME-3HB oligomers in the host colonization by the endosymbiont M. extorquens DSM13060 through targeted genetic mutations. The strains with deletions in PHB synthase (phaC), PHB depolymerase (phaZ1), and a transcription factor (phaR) showed altered PHB granule characteristics, as ΔphaC had a significantly low number of granules, ΔphaR had a significantly increased number of granules, and ΔphaZ1 had significantly large PHB granules in the bacterial cells. When the deletion strains were exposed to oxidative stress, the ΔphaC strain was sensitive to 10 mM HO· and 20 mM H2O2. The colonization of the host, Scots pine (Pinus sylvestris L.), by the deletion strains varied greatly. The deletion strain ΔphaR colonized the host mainly intercellularly, whereas the ΔphaZ1 strain was a slightly poorer colonizer than the control. The deletion strain ΔphaC lacked the colonization potential, living mainly on the surfaces of the epidermis of pine roots and shoots in contrast to the control, which intracellularly colonized all pine tissues within the study period. In earlier studies, deletions within the PHB metabolic pathway have had a minor effect on plant colonization by rhizobia. We have previously shown the association between ME-3HB oligomers, produced by PhaC and PhaZ1, and the ability to alleviate host-generated oxidative stress during plant infection by the endosymbiont M. extorquens DSM13060. Our current results show that the low capacity for PHB synthesis leads to poor tolerance of oxidative stress and loss of colonization potential by the endosymbiont. Altogether, our findings demonstrate that the metabolism of PHB in M. extorquens DSM13060 is an important trait in the non-rhizobial endosymbiosis.
RESUMO
Cerebral cavernous malformation (CCM) is a hemorrhagic neurovascular disease with no currently available therapeutics. Prior evidence suggests that different cell types may play a role in CCM pathogenesis. The contribution of each cell type to the dysfunctional cellular crosstalk remains unclear. Herein, RNA-seq was performed on fluorescence-activated cell sorted endothelial cells (ECs), pericytes, and neuroglia from CCM lesions and non-lesional brain tissue controls. Differentially Expressed Gene (DEG), pathway and Ligand-Receptor (LR) analyses were performed to characterize the dysfunctional genes of respective cell types within CCMs. Common DEGs among all three cell types were related to inflammation and endothelial-to-mesenchymal transition (EndMT). DEG and pathway analyses supported a role of lesional ECs in dysregulated angiogenesis and increased permeability. VEGFA was particularly upregulated in pericytes. Further pathway and LR analyses identified vascular endothelial growth factor A/ vascular endothelial growth factor receptor 2 signaling in lesional ECs and pericytes that would result in increased angiogenesis. Moreover, lesional pericytes and neuroglia predominantly showed DEGs and pathways mediating the immune response. Further analyses of cell specific gene alterations in CCM endorsed potential contribution to EndMT, coagulation, and a hypoxic microenvironment. Taken together, these findings motivate mechanistic hypotheses regarding non-endothelial contributions to lesion pathobiology and may lead to novel therapeutic targets. Video Abstract.
Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Células Endoteliais , Perfilação da Expressão Gênica , Transcriptoma , Microambiente TumoralRESUMO
BACKGROUND: Bilberry (Vaccinium myrtillus L.) is one of the most important economic and natural resources in Northern Europe. Despite its importance, the endophytic fungal community of the fruits has rarely been investigated. Biogeographic patterns and determinants of the fungal diversity in the bilberry fruit are poorly understood, albeit fungal endophytes can have a close relationship with the host plants. Here, we investigated the effect of climatic regions, and their weather conditions within growth season and soil properties on fungal endophytic communities of bilberry fruits collected from northern and southern regions of Finland using high-throughput sequencing technology targeting the internal transcribed spacer 2 ribosomal DNA region for fungi. RESULTS: Species richness and beta diversity (variation in community structure) were higher in the southern compared to the studied northern region. The weather condition of the growth season drove both fungal richness and community structure. Furthermore, abundance of the genera Venturia, Cladosporium, and Podosphaera was influenced by the weather, being different between the south and north regions. CONCLUSIONS: We conclude that diversity and assembly structure of the fungal endophytes in bilberry fruits follow similar patterns as for foliar fungal endophytes, being shaped by various environmental factors, such as the climate and surrounding vegetation.
RESUMO
Acute brain injuries (ABIs) pose a substantial global burden, demanding effective prognostic indicators for outcomes. This study explores the potential of urinary p75 neurotrophin receptor (p75NTR) concentration as a prognostic biomarker, particularly in relation to unfavorable outcomes. The study involved 46 ABI patients, comprising sub-cohorts of aneurysmal subarachnoid hemorrhage, ischemic stroke, and traumatic brain injury. Furthermore, we had four healthy controls. Samples were systematically collected from patients treated at the University Hospital of Turku between 2017 and 2019, at early (1.50 ± 0.70 days) and late (9.17 ± 3.40 days) post-admission time points. Urinary p75NTR levels, measured by ELISA and normalized to creatinine, were compared against patients' outcomes using the modified Rankin Scale (mRS). Early urine samples showed no significant p75NTR concentration difference between favorable and unfavorable mRS groups. In contrast, late samples exhibited a statistically significant increase in p75NTR concentrations in the unfavorable group (p = 0.033), demonstrating good prognostic accuracy (AUC = 70.9%, 95% CI = 53-89%, p = 0.03). Assessment of p75NTR concentration changes over time revealed no significant variation in the favorable group (p = 0.992) but a significant increase in the unfavorable group (p = 0.009). Moreover, p75NTR concentration was significantly higher in ABI patients (mean ± SD 40.49 ± 28.83-65.85 ± 35.04 ng/mg) compared to healthy controls (mean ± SD 0.54 ± 0.44 ng/mg), irrespective of sampling time or outcome (p < 0.0001). In conclusion, late urinary p75NTR concentrations emerged as a potential prognostic biomarker for ABIs, showing increased levels associated with unfavorable outcomes regardless of the specific type of brain injury. While early samples exhibited no significant differences, the observed late increases emphasize the time-dependent nature of this potential biomarker. Further validation in larger patient cohorts is crucial, highlighting the need for additional research to establish p75NTR as a reliable prognostic biomarker across various ABIs. Additionally, its potential role as a diagnostic biomarker warrants exploration.
RESUMO
In glioblastoma (GBM), the interplay of different immune cell subtypes, cytokines, and/or drugs shows high context-dependencies. Interrelations between the routinely applied dexamethasone (Dex) and microglia remain elusive. Here, we exploited rat organotypic brain slice co-cultures (OBSC) to examine the effects on a rat GBM cell line (S635) outgrowth resulting from the presence of Dex and pretreatment with the colony-stimulating factor receptor 1 (CSF1-R) inhibitor PLX5622: in native OBSC (without PLX5622-pretreatment), a diminished S635 spheroid outgrowth was observable, whereas Dex-treatment enhanced outgrowth in this condition compared to PLX5622-pretreated OBSC. Screening the supernatants of our model with a proteome profiler, we found that CXCL2 was differentially secreted in a Dex- and PLX5622-dependent fashion. To analyze causal interrelations, we interrupted the CXCL2/CXCR2-axis: in the native OBSC condition, CXCR2-blocking resulted in increased outgrowth, in combination with Dex, we found potentiated outgrowth. No effect was found in the PLX5622-pretreated. Our method allowed us to study the influence of three different factors-dexamethasone, PLX5622, and CXCL2-in a well-controlled, simplified, and straight-forward mechanistic manner, and at the same time in a more realistic ex vivo scenario compared to in vitro studies. In our model, we showed a GBM outgrowth enhancing synergism between CXCR2-blocking and Dex-treatment in the native condition, which was levelled by PLX5622-pretreatment.
Assuntos
Glioblastoma , Ratos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Microglia/metabolismo , Encéfalo/metabolismo , Linhagem Celular , Dexametasona/farmacologia , Dexametasona/metabolismoRESUMO
Background: The morbidity and mortality of acute subdural hematoma (aSDH) remains high. Several factors have been reported to affect the outcome and survival of these patients. In this study, we explored factors potentially associated with the outcome and survival of surgically treated acute subdural hematoma (aSDH), including postcraniotomy hematomas (PCHs). Methods: This retrospective cohort study was conducted in a single tertiary university hospital between 2008 and 2012 and all aSDH patients that underwent surgical intervention were included. A total of 132 cases were identified for collection of demographics, clinical, laboratory, and imaging data. Univariate and multivariable analyses were performed to assess factors associated with three-month Glasgow Outcome Scale (GOS) and survival at one- and five-year. Results: In this study, PCH (n = 14, 10.6%) was not associated with a worse outcome according to the 3- month GOS (p = 0.37) or one (p = 0.34) and five-year (p = 0.37) survival. The multivariable analysis showed that the volume of initial hematoma (p = 0.009) and Abbreviated Injury Scale score (p = 0.016) were independent predictors of the three-month GOS. Glasgow Coma Scale (GCS) score (p < 0.001 and p = 0.037) and age (p = 0.048 and p = 0.003) were predictors for one and five-year survival, while use of antiplatelet drug (p = 0.030), neuroworsening (p = 0.005) and smoking (p = 0.026) were significant factors impacting one year survival. In addition, blood alcohol level on admission was a predictor for five-year survival (p = 0.025). Conclusions: These elucidations underscore that, although PCHs are pertinent, a comprehensive appreciation of multifarious variables is indispensable in aSDH prognosis. These findings are observational, not causal. Expanded research endeavors are advocated to corroborate these insights.
RESUMO
BACKGROUND: Cavernous angiomas (CAs) affect 0.5% of the population, predisposing to serious neurologic sequelae from brain bleeding. A leaky gut epithelium associated with a permissive gut microbiome, was identified in patients who develop CAs, favoring lipid polysaccharide producing bacterial species. Micro-ribonucleic acids along with plasma levels of proteins reflecting angiogenesis and inflammation were also previously correlated with CA and CA with symptomatic hemorrhage. METHODS: The plasma metabolome of CA patients and CA patients with symptomatic hemorrhage was assessed using liquid-chromatography mass spectrometry. Differential metabolites were identified using partial least squares-discriminant analysis (p < 0.05, FDR corrected). Interactions between these metabolites and the previously established CA transcriptome, microbiome, and differential proteins were queried for mechanistic relevance. Differential metabolites in CA patients with symptomatic hemorrhage were then validated in an independent, propensity matched cohort. A machine learning-implemented, Bayesian approach was used to integrate proteins, micro-RNAs and metabolites to develop a diagnostic model for CA patients with symptomatic hemorrhage. RESULTS: Here we identify plasma metabolites, including cholic acid and hypoxanthine distinguishing CA patients, while arachidonic and linoleic acids distinguish those with symptomatic hemorrhage. Plasma metabolites are linked to the permissive microbiome genes, and to previously implicated disease mechanisms. The metabolites distinguishing CA with symptomatic hemorrhage are validated in an independent propensity-matched cohort, and their integration, along with levels of circulating miRNAs, enhance the performance of plasma protein biomarkers (up to 85% sensitivity and 80% specificity). CONCLUSIONS: Plasma metabolites reflect CAs and their hemorrhagic activity. A model of their multiomic integration is applicable to other pathologies.
Cavernous angiomas (CAs) are clusters of abnormal blood vessels found in the brain or spinal cord. A blood test that could identify people with CAs that have recently bled would help determine who need surgery or closer medical monitoring. We looked at the blood of people with CAs to compare the levels of metabolites, a type of small molecule produced within the body, in those who had recently bled and those who had not. We found that some metabolites may contribute to CA and have an impact on CA symptoms. Monitoring the levels of these metabolites can determine whether there had been a recent bleed. In the future, drugs or other therapies could be developed that would block or change the levels of these molecules and possibly be used to treat CA disease.
RESUMO
Patients with familial cerebral cavernous malformation (CCM) inherit germline loss of function mutations and are susceptible to progressive development of brain lesions and neurological sequelae during their lifetime. To date, no homologous circulating molecules have been identified that can reflect the presence of germ line pathogenetic CCM mutations, either in animal models or patients. We hypothesize that homologous differentially expressed (DE) plasma miRNAs can reflect the CCM germline mutation in preclinical murine models and patients. Herein, homologous DE plasma miRNAs with mechanistic putative gene targets within the transcriptome of preclinical and human CCM lesions were identified. Several of these gene targets were additionally found to be associated with CCM-enriched pathways identified using the Kyoto Encyclopedia of Genes and Genomes. DE miRNAs were also identified in familial-CCM patients who developed new brain lesions within the year following blood sample collection. The miRNome results were then validated in an independent cohort of human subjects with real-time-qPCR quantification, a technique facilitating plasma assays. Finally, a Bayesian-informed machine learning approach showed that a combination of plasma levels of miRNAs and circulating proteins improves the association with familial-CCM disease in human subjects to 95% accuracy. These findings act as an important proof of concept for the future development of translatable circulating biomarkers to be tested in preclinical studies and human trials aimed at monitoring and restoring gene function in CCM and other diseases.
Assuntos
MicroRNA Circulante , Hemangioma Cavernoso do Sistema Nervoso Central , MicroRNAs , Humanos , Camundongos , Animais , Teorema de Bayes , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Proteína KRIT1/genética , MicroRNAs/genéticaRESUMO
PURPOSE: Clinicians have increasingly encountered traumatic brain injuries (TBI) related to electric scooter (ES) accidents. In this study, we aim to identify the modifiable risk factors for ES-related TBIs. METHODS: A retrospective cohort of consecutive patients treated for ES-related traumatic brain injuries in a tertiary university hospital between May 2019 and September 2021 was identified and employed for the study. The characteristics of the accidents along with the clinical and imaging findings of the injuries were collected from the patient charts. RESULTS: During the study period, 104 TBIs related to ES accidents were identified. There was a high occurrence of accidents late at night and on Saturdays. In four cases, the patient's helmet use was mentioned (3.8%). Seventy-four patients (71%) were intoxicated. At the scene of the accident, seventy-seven (74%) of the patients had a Glasgow Coma Scale score of 13-15, three patients (3%) had a score of 9-12, and two patients (2%) had a score of 3-8. The majority (83%) of TBIs were diagnosed as concussions. Eighteen patients had evidence of intracranial injuries in the imagining. Two patients required neurosurgical procedures. The estimated population standardized incidence increased from 7.0/100,000 (95% CI 3.5-11/100,000) in 2019 to 27/100,000 (95% CI 20-34/100,000) in 2021. CONCLUSIONS: Alcohol intoxication and the lack of a helmet were common in TBIs caused by ES accidents. Most of the accidents occurred late at night. Targeting these modifiable factors could decrease the incidence of ES-related TBIs.
Assuntos
Intoxicação Alcoólica , Lesões Encefálicas Traumáticas , Acidentes de Trânsito , Intoxicação Alcoólica/epidemiologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/epidemiologia , Lesões Encefálicas Traumáticas/etiologia , Dispositivos de Proteção da Cabeça , Hospitais Universitários , Humanos , Estudos RetrospectivosRESUMO
The role of neurotrophins in neuronal plasticity has recently become a strong focus in neuroregeneration research field to elucidate the biological mechanisms by which these molecules modulate synapses, modify the response to injury, and alter the adaptation response. Intriguingly, the prior studies highlight the role of p75 neurotrophin receptor (p75NTR) in various injuries and diseases such as central nervous system injuries, Alzheimer's disease and amyotrophic lateral sclerosis. More comprehensive elucidation of the mechanisms, and therapies targeting these molecular signaling networks may allow for neuronal tissue regeneration following an injury. Due to a diverse role of the p75NTR in biology, the body of evidence comprising its biological role is diffusely spread out over numerous fields. This review condenses the main evidence of p75NTR for clinical applications and presents new findings from published literature how data mining approach combined with bioinformatic analyses can be utilized to gain new hypotheses in a molecular and network level.
RESUMO
Microbes living in plant tissues-endophytes-are mainly studied in crop plants where they typically colonize the root apoplast. Trees-a large carbon source with a high capacity for photosynthesis-provide a variety of niches for endophytic colonization. We have earlier identified a new type of plant-endophyte interaction in buds of adult Scots pine, where Methylorubrum species live inside the meristematic cells. The endosymbiont Methylorubrum extorquens DSM13060 significantly increases needle and root growth of pine seedlings without producing plant hormones, but by aggregating around host nuclei. Here, we studied gene expression and metabolites of the pine host induced by M. extorquens DSM13060 infection. Malic acid was produced by pine to potentially boost M. extorquens colonization and interaction. Based on gene expression, the endosymbiont activated the auxin- and ethylene (ET)-associated hormonal pathways through induction of CUL1 and HYL1, and suppressed salicylic and abscisic acid signaling of pine. Infection by the endosymbiont had an effect on pine meristem and leaf development through activation of GLP1-7 and ALE2, and suppressed flowering, root hair and lateral root formation by downregulation of AGL8, plantacyanin, GASA7, COW1 and RALFL34. Despite of systemic infection of pine seedlings by the endosymbiont, the pine genes CUL1, ETR2, ERF3, HYL, GLP1-7 and CYP71 were highly expressed in the shoot apical meristem, rarely in needles and not in stem or root tissues. Low expression of MERI5, CLH2, EULS3 and high quantities of ononitol suggest that endosymbiont promotes viability and protects pine seedlings against abiotic stress. Our results indicate that the endosymbiont positively affects host development and stress tolerance through mechanisms previously unknown for endophytic bacteria, manipulation of plant hormone signaling pathways, downregulation of senescence and cell death-associated genes and induction of ononitol biosynthesis.
Assuntos
Pinus sylvestris , Pinus , Endófitos/fisiologia , Meristema , Pinus/genética , PlântulaRESUMO
Benzodiazepine (BZD) misuse is a worldwide problem that healthcare professionals encounter in daily practice. High-dose BZD withdrawal is usually a long process that may require referral to an inpatient rehabilitation unit. Relapses after withdrawal are common. BZD withdrawal can cause complications including seizures, suicidal behavior, anxiety, and depression. Guidelines describe tapering protocols for modest doses; however, protocols for exceptionally high-dose BZD withdrawal are not well described. Herein, we describe a BZD tapering protocol for a patient with daily use of high-dose (1800 mg) oxazepam (OXP). The BZD tapering was administered in an inpatient psychiatric hospital, and the outcome was evaluated monthly after discharge for three months. This report describes a unique case of high-dose OXP withdrawal and also outlines an optional protocol to apply when clinicians encounter these unusual cases.
RESUMO
Wild berries are interesting research subjects due to their rich sources of health-beneficial phenolic compounds. However, the internal microbial communities, endophytes, associated with the wild berry fruits are currently unknown. Endophytes are bacteria or fungi inhabiting inside plant tissues, and their functions vary depending on the host species and environmental parameters. The present study aimed to examine community composition of fungal and bacterial endophytes in fruits of three wild berry species (bilberry Vaccinium myrtillus L., lingonberry Vaccinium vitis-idaea L. and crowberry Empetrum nigrum L.) and the effects of host plant species and their growth sites on shaping the endophytic communities. We found that the endophytic community structures differed between the berry species, and fungi were predominant over bacteria in the total endophytic taxa. We identified previously unknown endophytic fungal taxa including Angustimassarina, Dothidea, Fellozyma, Pseudohyphozyma, Hannaella coprosmae and Oberwinklerozyma straminea. A role of soluble phenolic compounds, the intracellular components in wild berry fruits, in shaping the endophytic communities is proposed. Overall, our study demonstrates that each berry species harbors a unique endophytic community of microbes.