Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Eur J Neurosci ; 57(2): 360-372, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36443250

RESUMO

Regulator of G-protein signalling (RGS) proteins inhibit signalling by G-protein-coupled receptors (GPCRs). GPCRs mediate the functions of several important neurotransmitters and serve as targets of many anti-psychotics. RGS2, RGS4, RGS5 and RGS16 are located on chromosome 1q23.3-31, a locus found to be associated with schizophrenia. Although previous gene expression analysis detected down-regulation of RGS4 expression in brain samples of patients with schizophrenia, the results were not consistent. In the present study, we performed a systematic meta-analysis of differential RGS2, RGS4, RGS5 and RGS16 expression in Brodmann Area 10 (BA10) samples of patients with schizophrenia and from healthy controls. Two microarray datasets met the inclusion criteria (overall, 41 schizophrenia samples and 38 controls were analysed). RGS2 and RGS16 were found to be up-regulated in BA10 samples of individuals with schizophrenia, whereas no differential expression of RGS4 and RGS5 was detected. Analysis of dorso-lateral prefrontal cortex samples of the CommonMind Consortium (258 schizophrenia samples vs. 279 controls) further validated the results. Given their central role in inactivating G-protein-coupled signalling pathways, our results suggest that differential gene expression might lead to enhanced inactivation of G-protein signalling in schizophrenia. This, in turn, suggests that additional studies are needed to further explore the consequences of the differential expression we detected, this time at the protein and functional levels.


Assuntos
Regulação da Expressão Gênica , Córtex Pré-Frontal , Proteínas RGS , Esquizofrenia , Humanos , Expressão Gênica , Perfilação da Expressão Gênica , Córtex Pré-Frontal/metabolismo , Proteínas RGS/genética , Esquizofrenia/genética , Regulação para Cima
2.
Protein Sci ; 31(7): e4352, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35762725

RESUMO

Homomers are prevalent in bacterial proteomes, particularly among core metabolic enzymes. Homomerization is often key to function and regulation, and interfaces that facilitate the formation of homomeric enzymes are subject to intense evolutionary change. However, our understanding of the molecular mechanisms that drive evolutionary variation in homomeric complexes is still lacking. How is the diversification of protein interfaces linked to variation in functional regulation and structural integrity of homomeric complexes? To address this question, we studied quaternary structure evolution of bacterial methionine S-adenosyltransferases (MATs)-dihedral homotetramers formed along a large and conserved dimeric interface harboring two active sites, and a small, recently evolved, interdimeric interface. Here, we show that diversity in the physicochemical properties of small interfaces is directly linked to variability in the kinetic stability of MAT quaternary complexes and in modes of their functional regulation. Specifically, hydrophobic interactions within the small interface of Escherichia coli MAT render the functional homotetramer kinetically stable yet impose severe aggregation constraints on complex assembly. These constraints are alleviated by electrostatic interactions that accelerate dimer-dimer assembly. In contrast, Neisseria gonorrhoeae MAT adopts a nonfunctional dimeric state due to the low hydrophobicity of its small interface and the high flexibility of its active site loops, which perturbs small interface integrity. Remarkably, in the presence of methionine and ATP, N. gonorrhoeae MAT undergoes substrate-induced assembly into a functional tetrameric state. We suggest that evolution acts on the interdimeric interfaces of MATs to tailor the regulation of their activity and stability to unique organismal needs.


Assuntos
Metionina Adenosiltransferase , Proteínas , Domínio Catalítico , Escherichia coli/metabolismo , Metionina , Metionina Adenosiltransferase/química , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Modelos Moleculares , Proteínas/química , Relação Estrutura-Atividade
3.
FEBS J ; 289(24): 7610-7630, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34729908

RESUMO

Adhesion G protein-coupled receptors (aGPCRs) are a class of structurally and functionally highly intriguing cell surface receptors with essential functions in health and disease. Thus, they display a vastly unexploited pharmacological potential. Our current understanding of the physiological functions and signaling mechanisms of aGPCRs form the basis for elucidating further molecular aspects. Combining these with novel tools and methodologies from different fields tailored for studying these unusual receptors yields a powerful potential for pushing aGPCR research from singular approaches toward building up an in-depth knowledge that will facilitate its translation to applied science. In this review, we summarize the state-of-the-art knowledge on aGPCRs in respect to structure-function relations, physiology, and clinical aspects, as well as the latest advances in the field. We highlight the upcoming most pressing topics in aGPCR research and identify strategies to tackle them. Furthermore, we discuss approaches how to promote, stimulate, and translate research on aGPCRs 'from bench to bedside' in the future.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Adesão Celular
4.
J Mol Biol ; 433(20): 167127, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34224746

RESUMO

Characterizing the three-dimensional structure of macromolecules is central to understanding their function. Traditionally, structures of proteins and their complexes have been determined using experimental techniques such as X-ray crystallography, NMR, or cryo-electron microscopy-applied individually or in an integrative manner. Meanwhile, however, computational methods for protein structure prediction have been improving their accuracy, gradually, then suddenly, with the breakthrough advance by AlphaFold2, whose models of monomeric proteins are often as accurate as experimental structures. This breakthrough foreshadows a new era of computational methods that can build accurate models for most monomeric proteins. Here, we envision how such accurate modeling methods can combine with experimental structural biology techniques, enhancing integrative structural biology. We highlight the challenges that arise when considering multiple structural conformations, protein complexes, and polymorphic assemblies. These challenges will motivate further developments, both in modeling programs and in methods to solve experimental structures, towards better and quicker investigation of structure-function relationships.


Assuntos
Proteínas/química , Animais , Cristalografia por Raios X/métodos , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica
5.
Cell Mol Life Sci ; 78(17-18): 6305-6318, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34292354

RESUMO

The structural basis for the GTPase-accelerating activity of regulators of G protein signaling (RGS) proteins, as well as the mechanistic basis for their specificity in interacting with the heterotrimeric (αßγ) G proteins they inactivate, is not sufficiently understood at the family level. Here, we used biochemical assays to compare RGS domains across the RGS family and map those individual residues that favorably contribute to GTPase-accelerating activity, and those residues responsible for attenuating RGS domain interactions with Gα subunits. We show that conserved interactions of RGS residues with both the Gα switch I and II regions are crucial for RGS activity, while the reciprocal effects of "modulatory" and "disruptor" residues selectively modulate RGS activity. Our results quantify how specific interactions between RGS domains and Gα subunits are set by a balance between favorable RGS residue interactions with particular Gα switch regions, and unfavorable interactions with the Gα helical domain.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas RGS/química , Proteínas RGS/genética , Alinhamento de Sequência , Termodinâmica
6.
Sci Rep ; 11(1): 3789, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589691

RESUMO

The interactions of the antibiotic proteins colicins/pyocins with immunity proteins is a seminal model system for studying protein-protein interactions and specificity. Yet, a precise and quantitative determination of which structural elements and residues determine their binding affinity and specificity is still lacking. Here, we used comparative structure-based energy calculations to map residues that substantially contribute to interactions across native and engineered complexes of colicins/pyocins and immunity proteins. We show that the immunity protein α1-α2 motif is a unique structurally-dissimilar element that restricts interaction specificity towards all colicins/pyocins, in both engineered and native complexes. This motif combines with a diverse and extensive array of electrostatic/polar interactions that enable the exquisite specificity that characterizes these interactions while achieving ultra-high affinity. Surprisingly, the divergence of these contributing colicin residues is reciprocal to residue conservation in immunity proteins. The structurally-dissimilar immunity protein α1-α2 motif is recognized by divergent colicins similarly, while the conserved immunity protein α3 helix interacts with diverse colicin residues. Electrostatics thus plays a key role in setting interaction specificity across all colicins and immunity proteins. Our analysis and resulting residue-level maps illuminate the molecular basis for these protein-protein interactions, with implications for drug development and rational engineering of these interfaces.


Assuntos
Colicinas/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Piocinas/química , Proteínas de Ligação a RNA/ultraestrutura , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , Colicinas/química , Colicinas/genética , Colicinas/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Ligação Proteica/genética , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/imunologia , Estrutura Secundária de Proteína , Piocinas/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia
7.
Nat Ecol Evol ; 5(1): 111-121, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168995

RESUMO

The metabotropic gamma-aminobutyric acid B receptor (GABABR) is a G protein-coupled receptor that mediates neuronal inhibition by the neurotransmitter GABA. While GABABR-mediated signalling has been suggested to play central roles in neuronal differentiation and proliferation across evolution, it has mostly been studied in the mammalian brain. Here, we demonstrate that ectopic activation of GABABR signalling affects neurogenic functions in the sea anemone Nematostella vectensis. We identified four putative Nematostella GABABR homologues presenting conserved three-dimensional extracellular domains and residues needed for binding GABA and the GABABR agonist baclofen. Moreover, sustained activation of GABABR signalling reversibly arrests the critical metamorphosis transition from planktonic larva to sessile polyp life stage. To understand the processes that underlie the developmental arrest, we combined transcriptomic and spatial analyses of control and baclofen-treated larvae. Our findings reveal that the cnidarian neurogenic programme is arrested following the addition of baclofen to developing larvae. Specifically, neuron development and neurite extension were inhibited, resulting in an underdeveloped and less organized nervous system and downregulation of proneural factors including NvSoxB(2), NvNeuroD1 and NvElav1. Our results thus point to an evolutionarily conserved function of GABABR in neurogenesis regulation and shed light on early cnidarian development.


Assuntos
Anêmonas-do-Mar , Animais , Metamorfose Biológica , Neurogênese , Receptores de GABA-B/genética , Anêmonas-do-Mar/genética , Ácido gama-Aminobutírico
8.
ACS Pharmacol Transl Sci ; 3(2): 361-370, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32296774

RESUMO

G protein-coupled receptors (GPCRs) are intensively studied due to their therapeutic potential as drug targets. Members of this large family of transmembrane receptor proteins mediate signal transduction in diverse cell types and play key roles in human physiology and health. In 2013 the research consortium GLISTEN (COST Action CM1207) was founded with the goal of harnessing the substantial growth in knowledge of GPCR structure and dynamics to push forward the development of molecular modulators of GPCR function. The success of GLISTEN, coupled with new findings and paradigm shifts in the field, led in 2019 to the creation of a related consortium called ERNEST (COST Action CA18133). ERNEST broadens focus to entire signaling cascades, based on emerging ideas of how complexity and specificity in signal transduction are not determined by receptor-ligand interactions alone. A holistic approach that unites the diverse data and perspectives of the research community into a single multidimensional map holds great promise for improved drug design and therapeutic targeting.

9.
J Mol Biol ; 431(17): 3302-3311, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31153905

RESUMO

RGS6 and RGS7 are regulators of G protein signaling (RGS) proteins that inactivate heterotrimeric (αßγ) G proteins and mediate diverse biological functions, such as cardiac and neuronal signaling. Uniquely, both RGS6 and RGS7 can discriminate between Gαo and Gαi1-two similar Gα subunits that belong to the same Gi sub-family. Here, we show that the isolated RGS domains of RGS6 and RGS7 are sufficient to achieve this specificity. We identified three specific RGS6/7 "disruptor residues" that can attenuate RGS interactions toward Gα subunits and demonstrated that their insertion into a representative high-activity RGS causes a significant, yet non-specific, reduction in activity. We further identified a unique "modulatory" residue that bypasses this negative effect, specifically toward Gαo. Hence, the exquisite specificity of RGS6 and RGS7 toward closely related Gα subunits is achieved via a two-tier specificity system, whereby a Gα-specific modulatory motif overrides the inhibitory effect of non-specific disruptor residues. Our findings expand the understanding of the molecular toolkit used by the RGS family to achieve specific interactions with selected Gα subunits-emphasizing the functional importance of the RGS domain in determining the activity and selectivity of RGS R7 sub-family members toward particular Gα subunits.


Assuntos
Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/química , Proteínas RGS/metabolismo , Animais , Proteínas de Ligação ao GTP/genética , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Proteínas RGS/genética , Sensibilidade e Especificidade , Transdução de Sinais
10.
Sci Rep ; 9(1): 6898, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053791

RESUMO

Gαq is a ubiquitous molecular switch that activates the effectors phospholipase-C-ß3 (PLC-ß3) and Rho guanine-nucleotide exchange factors. Gαq is inactivated by regulators of G protein signaling proteins, as well as by PLC-ß3. Gαq further interacts with G protein-coupled receptor kinase 2 (GRK2), although the functional role of this interaction is debated. While X-ray structures of Gαq bound to representatives of these partners have revealed details of their interactions, the mechanistic basis for differential Gαq interactions with multiple partners (i.e., Gαq multi-specificity) has not been elucidated at the individual residue resolution. Here, we map the structural determinants of Gαq multi-specificity using structure-based energy calculations. We delineate regions that specifically interact with GTPase Activating Proteins (GAPs) and residues that exclusively contribute to effector interactions, showing that only the Gαq "Switch II" region interacts with all partners. Our analysis further suggests that Gαq-GRK2 interactions are consistent with GRK2 functioning as an effector, rather than a GAP. Our multi-specificity analysis pinpoints Gαq residues that uniquely contribute to interactions with particular partners, enabling precise manipulation of these cascades. As such, we dissect the molecular basis of Gαq function as a central signaling hub, which can be used to target Gαq-mediated signaling in therapeutic interventions.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato , Termodinâmica
12.
Proteins ; 87(3): 185-197, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30520519

RESUMO

We combined computational and experimental methods to interrogate the binding determinants of angiopoietin-2 (Ang2) to its receptor tyrosine kinase (RTK) Tie2-a central signaling system in angiogenesis, inflammation, and tumorigenesis. We used physics-based electrostatic and surface-area calculations to identify the subset of interfacial Ang2 and Tie2 residues that can affect binding directly. Using random and site-directed mutagenesis and yeast surface display (YSD), we validated these predictions and identified additional Ang2 positions that affected receptor binding. We then used burial-based calculations to classify the larger set of Ang2 residues that are buried in the Ang2 core, whose mutations can perturb the Ang2 structure and thereby affect interactions with Tie2 indirectly. Our analysis showed that the Ang2-Tie2 interface is dominated by nonpolar contributions, with only three Ang2 and two Tie2 residues that contribute electrostatically to intermolecular interactions. Individual interfacial residues contributed only moderately to binding, suggesting that engineering of this interface will require multiple mutations to reach major effects. Conversely, substitutions in substantially buried Ang2 residues were more prevalent in our experimental screen, reduced binding substantially, and are therefore more likely to have a deleterious effect that might contribute to oncogenesis. Computational analysis of additional RTK-ligand complexes, c-Kit-SCF and M-CSF-c-FMS, and comparison to previous YSD results, further show the utility of our combined methodology.


Assuntos
Complexos Multiproteicos/química , Mapas de Interação de Proteínas/genética , Receptor TIE-2/química , Proteínas de Transporte Vesicular/química , Carcinogênese/genética , Simulação por Computador , Humanos , Inflamação/genética , Ligantes , Complexos Multiproteicos/genética , Mutagênese Sítio-Dirigida , Mutação/genética , Neovascularização Patológica/genética , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-kit/química , Receptor TIE-2/genética , Transdução de Sinais/genética , Fator de Células-Tronco/química , Proteínas de Transporte Vesicular/genética
13.
Biochem Biophys Res Commun ; 503(4): 2736-2741, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30111488

RESUMO

Regulators of G-protein Signaling (RGS) proteins inactivate heterotrimeric G proteins, thereby setting the duration of active signaling. In particular, the RGS RZ subfamily, which consists of RGS17, RGS19, and RGS20, mediates numerous physiological functions and human pathologies - mostly by functioning as GTPase Activating Proteins (GAPs) towards the Gαi subfamily. Yet, which RZ subfamily members mediate particular functions and how their GAP activity and specificity are governed at the amino acid level is not well understood. Here, we show that all RZ subfamily members have similar and relatively low GAP activity towards Gαo. We characterized four RZ-specific structural motifs that mediate this low activity, and suggest they perturb optimal interactions with the Gα subunit. Indeed, inserting these RZ-specific motifs into the representative high-activity RGS16 impaired GAP activity in a non-additive manner. Our results provide residue-level insights into the specificity determinants of the RZ subfamily, and enable to study their interactions in signaling cascades by using redesigned mutants such as those presented in this work.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades Proteicas/química , Proteínas RGS/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais
14.
Genome Biol Evol ; 10(9): 2490-2500, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982411

RESUMO

Chemical communication is fundamental for the operation of insect societies. Their diverse vocabulary of chemical signals requires a correspondingly diverse set of chemosensory receptors. Insect olfactory receptors (ORs) are the largest family of chemosensory receptors. The OR family is characterized by frequent expansions of subfamilies, in which duplicated ORs may adapt to detect new signals through positive selection on their amino acid sequence. Ants are an extreme example with ∼400 ORs per genome-the highest number in insects. Presumably, this reflects an increased complexity of chemical communication. Here, we examined gene duplications and positive selection on ant ORs. We reconstructed the hymenopteran OR gene tree, including five ant species, and inferred positive selection along every branch using the branch-site test, a total of 3326 tests. We find more positive selection in branches following species-specific duplications. We identified amino acid sites targeted by positive selection, and mapped them onto a structural model of insect ORs. Seventeen sites were under positive selection in six or more branches, forming two clusters on the extracellular side of the receptor, on either side of a cleft in the structure. This region was previously implicated in ligand activation, suggesting that the concentration of positively selected sites in this region is related to adaptive evolution of ligand binding sites or allosteric transmission of ligand activation. These results provide insights into the specific OR subfamilies and individual residues that facilitated adaptive evolution of olfactory functions, potentially explaining the elaboration of chemical signaling in ant societies.


Assuntos
Formigas/genética , Proteínas de Insetos/genética , Filogenia , Receptores Odorantes/genética , Seleção Genética , Animais , Formigas/química , Sítios de Ligação , Evolução Molecular , Duplicação Gênica , Proteínas de Insetos/química , Ligantes , Modelos Moleculares , Conformação Proteica , Receptores Odorantes/química
15.
Sci Signal ; 11(534)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895615

RESUMO

Understanding the molecular basis of interaction specificity between RGS (regulator of G protein signaling) proteins and heterotrimeric (αßγ) G proteins would enable the manipulation of RGS-G protein interactions, explore their functions, and effectively target them therapeutically. RGS proteins are classified into four subfamilies (R4, R7, RZ, and R12) and function as negative regulators of G protein signaling by inactivating Gα subunits. We found that the R12 subfamily members RGS10 and RGS14 had lower activity than most R4 subfamily members toward the Gi subfamily member Gαo Using structure-based energy calculations with multiple Gα-RGS complexes, we identified R12-specific residues in positions that are predicted to determine the divergent activity of this subfamily. This analysis predicted that these residues, which we call "disruptor residues," interact with the Gα helical domain. We engineered the R12 disruptor residues into the RGS domains of the high-activity R4 subfamily and found that these altered proteins exhibited reduced activity toward Gαo Reciprocally, replacing the putative disruptor residues in RGS18 (a member of the R4 subfamily that exhibited low activity toward Gαo) with the corresponding residues from a high-activity R4 subfamily RGS protein increased its activity toward Gαo Furthermore, the high activity of the R4 subfamily toward Gαo was independent of the residues in the homologous positions to the R12 subfamily and RGS18 disruptor residues. Thus, our results suggest that the identified RGS disruptor residues function as negative design elements that attenuate RGS activity for specific Gα proteins.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas RGS/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas RGS/química , Proteínas RGS/genética , Homologia de Sequência
16.
Biochem J ; 475(14): 2293-2304, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29925530

RESUMO

Regulators of G protein signaling (RGS) proteins inactivate Gα subunits, thereby controlling G protein-coupled signaling networks. Among all RGS proteins, RGS2 is unique in interacting only with the Gαq but not with the Gαi subfamily. Previous studies suggested that this specificity is determined by the RGS domain and, in particular, by three RGS2-specific residues that lead to a unique mode of interaction with Gαq This interaction was further proposed to act through contacts with the Gα GTPase domain. Here, we combined energy calculations and GTPase activity measurements to determine which Gα residues dictate specificity toward RGS2. We identified putative specificity-determining residues in the Gα helical domain, which among G proteins is found only in Gα subunits. Replacing these helical domain residues in Gαi with their Gαq counterparts resulted in a dramatic specificity switch toward RGS2. We further show that Gα-RGS2 specificity is set by Gαi residues that perturb interactions with RGS2, and by Gαq residues that enhance these interactions. These results show, for the first time, that the Gα helical domain is central to dictating specificity toward RGS2, suggesting that this domain plays a general role in governing Gα-RGS specificity. Our insights provide new options for manipulating RGS-G protein interactions in vivo, for better understanding of their 'wiring' into signaling networks, and for devising novel drugs targeting such interactions.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Proteínas RGS/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Domínios Proteicos , Proteínas RGS/genética , Proteínas RGS/metabolismo
17.
Pigment Cell Melanoma Res ; 31(5): 641-648, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29665313

RESUMO

The NRAS oncoprotein is highly mutated in melanoma. However, to date, no comprehensive proteomic study has been reported for NRAS. Here, we utilized the endogenous epitope tagging (EET) approach for the identification of novel NRAS binding partners. Using EET, an epitope tag is added to the endogenously expressed protein, via modification of its genomic coding sequence. Existing EET systems are not robust, suffer from high background, and are labor-intensive. To this end, we present a polyadenylation signal-trap construct for N'-tagging that generates a polycistronic mRNA with the gene of interest. This system requires the integration of the tagging cassette in frame with the target gene to be expressed. Using this design, we demonstrate, for the first time, endogenous tagging of NRAS in melanoma cells allowing the identification of the E3 ubiquitin ligase c-CBL as a novel NRAS binding partner. Thus, our developed EET technology allows the characterization of new RAS effectors, which could be beneficial for the design of future drugs that inhibit constitutive signaling of RAS oncogenic mutants.


Assuntos
Mapeamento de Epitopos/métodos , Epitopos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Epitopos/genética , GTP Fosfo-Hidrolases/genética , Humanos , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-cbl/genética , Células Tumorais Cultivadas
18.
Sci Rep ; 8(1): 653, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330521

RESUMO

Analysis of 501 melanoma exomes revealed RGS7, which encodes a GTPase-accelerating protein (GAP), to be a tumor-suppressor gene. RGS7 was mutated in 11% of melanomas and was found to harbor three recurrent mutations (p.R44C, p.E383K and p.R416Q). Structural modeling of the most common recurrent mutation of the three (p.R44C) predicted that it destabilizes the protein due to the loss of an H-bond and salt bridge network between the mutated position and the serine and aspartic acid residues at positions 58 as 61, respectively. We experimentally confirmed this prediction showing that the p.R44C mutant protein is indeed destabilized. We further show RGS7 p.R44C has weaker catalytic activity for its substrate Gαo, thus providing a dual mechanism for its loss of function. Both of these effects are expected to contribute to loss of function of RGS7 resulting in increased anchorage-independent growth, migration and invasion of melanoma cells. By mutating position 56 in the R44C mutant from valine to cysteine, thereby enabling the formation of a disulfide bridge between the two mutated positions, we slightly increased the catalytic activity and reinstated protein stability, leading to the rescue of RGS7's function as a tumor suppressor. Our findings identify RGS7 as a novel melanoma driver and point to the clinical relevance of using strategies to stabilize the protein and, thereby, restore its function.


Assuntos
Melanoma/genética , Mutação , Proteínas RGS/química , Proteínas RGS/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Dissulfetos/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligação de Hidrogênio , Melanoma/metabolismo , Modelos Moleculares , Invasividade Neoplásica , Conformação Proteica , Estabilidade Proteica , Proteínas RGS/genética
19.
Biochem J ; 474(15): 2601-2617, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28655719

RESUMO

Enhanced activation of the signaling pathways that mediate the differentiation of mononuclear monocytes into osteoclasts is an underlying cause of several bone diseases and bone metastasis. In particular, dysregulation and overexpression of macrophage colony-stimulating factor (M-CSF) and its c-FMS tyrosine kinase receptor, proteins that are essential for osteoclast differentiation, are known to promote bone metastasis and osteoporosis, making both the ligand and its receptor attractive targets for therapeutic intervention. With this aim in mind, our starting point was the previously held concept that the potential of the M-CSFC31S mutant as a therapeutic is derived from its inability to dimerize and hence to act as an agonist. The current study showed, however, that dimerization is not abolished in M-CSFC31S and that the protein retains agonistic activity toward osteoclasts. To design an M-CSF mutant with diminished dimerization capabilities, we solved the crystal structure of the M-CSFC31S dimer complex and used structure-based energy calculations to identify the residues responsible for its dimeric form. We then used that analysis to develop M-CSFC31S,M27R, a ligand-based, high-affinity antagonist for c-FMS that retained its binding ability but prevented the ligand dimerization that leads to receptor dimerization and activation. The monomeric properties of M-CSFC31S,M27R were validated using dynamic light scattering and small-angle X-ray scattering analyses. It was shown that this mutant is a functional inhibitor of M-CSF-dependent c-FMS activation and osteoclast differentiation in vitro Our study, therefore, provided insights into the sequence-structure-function relationships of the M-CSF/c-FMS interaction and of ligand/receptor tyrosine kinase interactions in general.


Assuntos
Substituição de Aminoácidos , Diferenciação Celular/genética , Fator Estimulador de Colônias de Macrófagos , Mutação de Sentido Incorreto , Multimerização Proteica/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Animais , Humanos , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Osteoclastos/citologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Relação Estrutura-Atividade
20.
J Mol Biol ; 429(1): 97-114, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27890784

RESUMO

The stem cell factor (SCF)/c-Kit receptor tyrosine kinase complex-with its significant roles in hematopoiesis and angiogenesis-is an attractive target for rational drug design. There is thus a need to map, in detail, the SCF/c-Kit interaction sites and the mechanisms that modulate this interaction. While most residues in the direct SCF/c-Kit binding interface can be identified from the existing crystal structure of the complex, other residues that affect binding through protein unfolding, intermolecular interactions, allosteric or long-distance electrostatic effects cannot be directly inferred. Here, we describe an efficient method for protein-wide epitope mapping using yeast surface display. A library of single SCF mutants that span the SCF sequence was screened for decreased affinity to soluble c-Kit. Sequencing of selected clones allowed the identification of mutations that reduce SCF binding affinity to c-Kit. Moreover, the screening of these SCF clones for binding to a structural antibody helped identify mutations that result in small or large conformational changes in SCF. Computational modeling of the experimentally identified mutations showed that these mutations reduced the binding affinity through one of the three scenarios: through SCF destabilization, through elimination of favorable SCF/c-Kit intermolecular interactions, or through allosteric changes. Eight SCF variants were expressed and purified. Experimentally measured in vitro binding affinities of these mutants to c-Kit confirmed both the yeast surface display selection results and the computational predictions. This study has thus identified the residues crucial for c-Kit/SCF binding and has demonstrated the advantages of using a combination of computational and combinatorial methods for epitope mapping.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/metabolismo , Técnicas de Visualização da Superfície Celular , Biologia Computacional , Análise Mutacional de DNA , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fator de Células-Tronco/química , Fator de Células-Tronco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA