Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39023784

RESUMO

PURPOSE: Small cell lung cancer (SCLC) is a highly aggressive tumor with neuroendocrine origin. Although SCLC frequently express somatostatin receptor type 2 (SSTR2), a significant clinical benefit of SSTR2-targeted radionuclide therapies of SCLC was not observed so far. We hypothesize that combination treatment with a PARP inhibitor (PARPi) could lead to radiosensitization and increase the effectiveness of SSTR2-targeted therapy in SCLC. METHODS: SSTR2-ligand uptake of the SCLC cell lines H69 and H446 was evaluated in vitro using flow cytometry, and in vivo using SPECT imaging and cut-and-count biodistribution. Single-agent (Olaparib, Rucaparib, [177Lu]Lu-DOTA-TOC) and combination treatment responses were determined in vitro via cell viability, clonogenic survival and γH2AX DNA damage assays. In vivo, we treated athymic nude mice bearing H69 or H446 xenografts with Olaparib, Rucaparib, or [177Lu]Lu-DOTA-TOC alone or with combination treatment regimens to assess the impact on tumor growth and survival of the treated mice. RESULTS: H446 and H69 cells exhibited low SSTR2 expression, i.e. 60 to 90% lower uptake of SSTR2-ligands compared to AR42J cells. In vitro, combination treatment of [177Lu]Lu-DOTA-TOC with PARPi resulted in 2.9- to 67-fold increased potency relative to [177Lu]Lu-DOTA-TOC alone. We observed decreased clonogenic survival and higher amounts of persistent DNA damage compared to single-agent treatment for both Olaparib and Rucaparib. In vivo, tumor doubling times increased to 1.6-fold (H446) and 2.2-fold (H69) under combination treatment, and 1.0 to 1.1-fold (H446) and 1.1 to 1.7-fold (H69) in monotherapies compared to untreated animals. Concurrently, median survival was higher in the combination treatment groups in both models compared to monotherapy and untreated mice. Fractionating the PRRT dose did not lead to further improvement of therapeutic outcome. CONCLUSION: The addition of PARPi can markedly improve the potency of SSTR2-targeted PRRT in SCLC models in SSTR2 low-expressing tumors. Further evaluation in humans seems justified based on the results as novel treatment options for SCLC are urgently needed.

2.
Biomed Opt Express ; 15(5): 3092-3093, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855655

RESUMO

A feature issue is being presented by a team of guest editors containing papers based on studies presented at the Optical Molecular Probes, Imaging and Drug Delivery conference as part of the Optica Biophotonics Congress in Vancouver, Canada from April 24-27, 2023.

3.
RSC Med Chem ; 15(6): 2018-2029, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911160

RESUMO

In a recent paper in this journal (RSC Med. Chem., 2023, 14, 2429), we described an unusually strong impact of regiospecific exchange of phenylalanines by tyrosines in 10 gallium-68-labeled trimers of certain cyclic RGD peptides, c[XRGDLAXp(NMe)K] (X = F or Y), on non-specific organ uptakes. We found that there was, in part, no correlation of liver uptake with established polarity proxies, such as the octanol-water distribution coefficient (log D). Since this observation could not be explained straightforwardly, we suggested that the symmetry of the compounds had resulted in a synergistic interaction of certain components of the macromolecules. In the present work, we investigated whether a comparable effect also occurred for a series of 5 tetramers labeled with lutetium-177. We found that in contrast to the trimers, liver uptake of the tetramers was well correlated to their polarity, indicating that the unusual observations along the trimer series indeed was a unique feature, probably related to their particular symmetry. Since the Lu-177 labeled tetramers are also potential agents for treatment of a variety of αvß6-integrin expressing cancers, these were evaluated in mice bearing human lung adenocarcinoma xenografts. Due to their tumor-specific uptake and retention in biodistribution and SPECT imaging experiments, these compounds are considered a step forward on the way to αvß6-integrin-targeted anticancer agents. Furthermore, we noticed that the presence of tyrosines in general had a positive impact on the in vivo performance of our peptide multimers. In view of the fact that a corresponding rule was already proposed in the context of protein engineering, we argue in favor of considering peptide multimers as a special class of small or medium-sized proteins. In summary, we contend that the performance of peptide multimers is less determined by the in vitro characteristics (particularly, affinity and selectivity) of monomers, but rather by the peptides' suitability for the overall macromolecular design concept, and peptides containing tyrosines are preferred.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38717591

RESUMO

PURPOSE: 68Ga-Trivehexin is an investigational PET radiopharmaceutical (NCT05799274) targeting αvß6-integrin for PET imaging of carcinomas. 177Lu-D0301 is a structurally related therapeutic peptide tetramer. However, it showed considerable kidney uptake in rodents, impeding clinical applicability. We therefore evaluated the impact of different kidney protection strategies on the biodistribution of both agents in normal and tumor-bearing mice. METHODS: Ex-vivo biodistribution of 68Ga-Trivehexin (90 min p.i.) and 177Lu-D0301 (90 min and 24 h p.i.) was determined in healthy C57BL/6N and H2009 (human lung adenocarcinoma) xenografted CB17-SCID mice without and with co-infusion of 100 µL of solutions containing 2.5% arginine + 2.5% lysine (Arg/Lys), 4% succinylated gelatin (gelofusine, gelo), or combinations thereof. Arg/Lys was injected either i.p. 30 min before and after the radiopharmaceutical, or i.v. 2 min before the radiopharmaceutical. Gelo was administered either i.v. 2 min prior activity, or pre-mixed and injected together with the radiopharmaceutical (n = 5 per group). C57BL/6N mice were furthermore imaged by PET (90 min p.i.) and SPECT (24 h p.i.). RESULTS: Kidney uptake of 68Ga-Trivehexin in C57BL/6N mice was reduced by 15% (Arg/Lys i.p.), 25% (Arg/Lys i.v.), and 70% (gelo i.v.), 90 min p.i., relative to control. 177Lu-D0301 kidney uptake was reduced by 2% (Arg/Lys i.p.), 41% (Arg/Lys i.v.), 61% (gelo i.v.) and 66% (gelo + Arg/Lys i.v.) 24 h p.i., compared to control. Combination of Arg/Lys and gelo provided no substantial benefit. Gelo furthermore reduced kidney uptake of 177Lu-D0301 by 76% (90 min p.i.) and 85% (24 h p.i.) in H2009 bearing SCID mice. Since tumor uptake was not (90 min p.i.) or only slightly reduced (15%, 24 h p.i.), the tumor/kidney ratio was improved by factors of 3.3 (90 min p.i.) and 2.6 (24 h p.i.). Reduction of kidney uptake was demonstrated by SPECT, which also showed that the remaining activity was located in the cortex. CONCLUSIONS: The kidney uptake of both investigated radiopharmaceuticals was more efficiently reduced by gelofusine (61-85%) than Arg/Lys (25-41%). Gelofusine appears particularly suitable for reducing renal uptake of αvß6-integrin targeted 177Lu-labeled peptide multimers because its application led to approximately three times higher tumor-to-kidney ratios. Since the incidence of severe adverse events (anaphylaxis) with succinylated gelatin products (reportedly 0.0062-0.038%) is comparable to that of gadolinium-based MRI or iodinated CT contrast agents (0.008% and 0.04%, respectively), clinical use of gelofusine during radioligand therapy appears feasible if similar risk management strategies as for contrast agents are applied.

5.
J Exp Clin Cancer Res ; 43(1): 53, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383387

RESUMO

BACKGROUND: Esophageal cancer is one of the 10 most common cancers worldwide and its incidence is dramatically increasing. Despite some improvements, the current surveillance protocol with white light endoscopy and random untargeted biopsies collection (Seattle protocol) fails to diagnose dysplastic and cancerous lesions in up to 50% of patients. Therefore, new endoscopic imaging technologies in combination with tumor-specific molecular probes are needed to improve early detection. Herein, we investigated the use of the fluorescent Poly (ADP-ribose) Polymerase 1 (PARP1)-inhibitor PARPi-FL for early detection of dysplastic lesions in patient-derived organoids and transgenic mouse models, which closely mimic the transformation from non-malignant Barrett's Esophagus (BE) to invasive esophageal adenocarcinoma (EAC). METHODS: We determined PARP1 expression via immunohistochemistry (IHC) in human biospecimens and mouse tissues. We also assessed PARPi-FL uptake in patient- and mouse-derived organoids. Following intravenous injection of 75 nmol PARPi-FL/mouse in L2-IL1B (n = 4) and L2-IL1B/IL8Tg mice (n = 12), we conducted fluorescence molecular endoscopy (FME) and/or imaged whole excised stomachs to assess PARPi-FL accumulation in dysplastic lesions. L2-IL1B/IL8Tg mice (n = 3) and wild-type (WT) mice (n = 2) without PARPi-FL injection served as controls. The imaging results were validated by confocal microscopy and IHC of excised tissues. RESULTS: IHC on patient and murine tissue revealed similar patterns of increasing PARP1 expression in presence of dysplasia and cancer. In human and murine organoids, PARPi-FL localized to PARP1-expressing epithelial cell nuclei after 10 min of incubation. Injection of PARPi-FL in transgenic mouse models of BE resulted in the successful detection of lesions via FME, with a mean target-to-background ratio > 2 independently from the disease stage. The localization of PARPi-FL in the lesions was confirmed by imaging of the excised stomachs and confocal microscopy. Without PARPi-FL injection, identification of lesions via FME in transgenic mice was not possible. CONCLUSION: PARPi-FL imaging is a promising approach for clinically needed improved detection of dysplastic and malignant EAC lesions in patients with BE. Since PARPi-FL is currently evaluated in a phase 2 clinical trial for oral cancer detection after topical application, clinical translation for early detection of dysplasia and EAC in BE patients via FME screening appears feasible.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Humanos , Camundongos , Animais , Detecção Precoce de Câncer , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/genética , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/genética , Camundongos Transgênicos , Endoscopia , Poli(ADP-Ribose) Polimerase-1/genética
6.
RSC Med Chem ; 14(12): 2564-2573, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38099056

RESUMO

Multimerization is an established strategy to design bioactive macromolecules with enhanced avidity, which has been widely employed to increase the target-specific binding and uptake of imaging probes and pharmaceuticals. However, the factors governing the general biodistribution of multimeric probes are less well understood but are nonetheless decisive for their clinical application. We found that regiospecific exchange of phenylalanine by tyrosine (chemically equivalent to addition of single oxygen atoms) can have an unexpected, dramatic impact on the in vivo behavior of gallium-68 labeled αvß6-integrin binding peptides trimers. For example, introduction of one and two Tyr, equivalent to just 1 and 2 additional oxygens and molecular weight increases of 0.38% and 0.76% for our >4 kDa constructs, reduced non-specific liver uptake by 50% and 72%, respectively. The observed effect did not correlate to established polarity measures such as log D, and generally defies explanation by reductionist approaches. We conclude that multimers should be viewed not just as molecular combinations of peptides whose properties simply add up, but as whole entities with higher intrinsic complexity and thus a strong tendency to exhibit newly emerged properties that, on principle, cannot be predicted from the characteristics of the monomers used.

7.
J Chem Inf Model ; 63(20): 6302-6315, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37788340

RESUMO

Receptor-selective peptides are widely used as smart carriers for specific tumor-targeted delivery. A remarkable example is the cyclic nonapeptide iRGD (CRGDKPGDC, 1) that couples intrinsic cytotoxic effects with striking tumor-homing properties. These peculiar features are based on a rather complex multistep mechanism of action, where the primary event is the recognition of RGD integrins. Despite the high number of preclinical studies and the recent success of a phase I trial for the treatment of pancreatic ductal adenocarcinoma (PDAC), there is little information available about the iRGD three-dimensional (3D) structure and integrin binding properties. Here, we re-evaluate the peptide's affinity for cancer-related integrins including not only the previously known targets αvß3 and αvß5 but also the αvß6 isoform, which is known to drive cell growth, migration, and invasion in many malignancies including PDAC. Furthermore, we use parallel tempering in the well-tempered ensemble (PT-WTE) metadynamics simulations to characterize the in-solution conformation of iRGD and extensive molecular dynamics calculations to fully investigate its binding mechanism to integrin partners. Finally, we provide clues for fine-tuning the peptide's potency and selectivity profile, which, in turn, may further improve its tumor-homing properties.


Assuntos
Integrinas , Oligopeptídeos , Linhagem Celular Tumoral , Oligopeptídeos/química , Peptídeos/química , Neoplasias Pancreáticas
8.
EMBO Mol Med ; 15(9): e16431, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37485814

RESUMO

The DNA damage response (DDR) acts as a barrier to malignant transformation and is often impaired during tumorigenesis. Exploiting the impaired DDR can be a promising therapeutic strategy; however, the mechanisms of inactivation and corresponding biomarkers are incompletely understood. Starting from an unbiased screening approach, we identified the SMC5-SMC6 Complex Localization Factor 2 (SLF2) as a regulator of the DDR and biomarker for a B-cell lymphoma (BCL) patient subgroup with an adverse prognosis. SLF2-deficiency leads to loss of DDR factors including Claspin (CLSPN) and consequently impairs CHK1 activation. In line with this mechanism, genetic deletion of Slf2 drives lymphomagenesis in vivo. Tumor cells lacking SLF2 are characterized by a high level of DNA damage, which leads to alterations of the post-translational SUMOylation pathway as a safeguard. The resulting co-dependency confers synthetic lethality to a clinically applicable SUMOylation inhibitor (SUMOi), and inhibitors of the DDR pathway act highly synergistic with SUMOi. Together, our results identify SLF2 as a DDR regulator and reveal co-targeting of the DDR and SUMOylation as a promising strategy for treating aggressive lymphoma.


Assuntos
Dano ao DNA , Linfoma de Células B , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Linfócitos B , Reparo do DNA , Linfoma de Células B/genética
9.
Cell Rep Med ; 3(11): 100815, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384095

RESUMO

Over 90% of pancreatic cancers present mutations in KRAS, one of the most common oncogenic drivers overall. Currently, most KRAS mutant isoforms cannot be targeted directly. Moreover, targeting single RAS downstream effectors induces adaptive resistance mechanisms. We report here on the combined inhibition of SHP2, upstream of KRAS, using the allosteric inhibitor RMC-4550 and of ERK, downstream of KRAS, using LY3214996. This combination shows synergistic anti-cancer activity in vitro, superior disruption of the MAPK pathway, and increased apoptosis induction compared with single-agent treatments. In vivo, we demonstrate good tolerability and efficacy of the combination, with significant tumor regression in multiple pancreatic ductal adenocarcinoma (PDAC) mouse models. Finally, we show evidence that 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) can be used to assess early drug responses in animal models. Based on these results, we will investigate this drug combination in the SHP2 and ERK inhibition in pancreatic cancer (SHERPA; ClinicalTrials.gov: NCT04916236) clinical trial, enrolling patients with KRAS-mutant PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Ensaios Clínicos como Assunto , Neoplasias Pancreáticas
10.
EMBO J ; 41(20): e110871, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36059274

RESUMO

Deubiquitylases (DUBs) are therapeutically amenable components of the ubiquitin machinery that stabilize substrate proteins. Their inhibition can destabilize oncoproteins that may otherwise be undruggable. Here, we screened for DUB vulnerabilities in multiple myeloma, an incurable malignancy with dependency on the ubiquitin proteasome system and identified OTUD6B as an oncogene that drives the G1/S-transition. LIN28B, a suppressor of microRNA biogenesis, is specified as a bona fide cell cycle-specific substrate of OTUD6B. Stabilization of LIN28B drives MYC expression at G1/S, which in turn allows for rapid S-phase entry. Silencing OTUD6B or LIN28B inhibits multiple myeloma outgrowth in vivo and high OTUD6B expression evolves in patients that progress to symptomatic multiple myeloma and results in an adverse outcome of the disease. Thus, we link proteolytic ubiquitylation with post-transcriptional regulation and nominate OTUD6B as a potential mediator of the MGUS-multiple myeloma transition, a central regulator of MYC, and an actionable vulnerability in multiple myeloma and other tumors with an activated OTUD6B-LIN28B axis.


Assuntos
Endopeptidases , MicroRNAs , Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-myc , Proteínas de Ligação a RNA , Ciclo Celular , Linhagem Celular Tumoral , Endopeptidases/genética , Humanos , MicroRNAs/genética , Mieloma Múltiplo/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Ligação a RNA/genética , Ubiquitinas/metabolismo
11.
Sci Rep ; 12(1): 8356, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589936

RESUMO

Human brain cells generated by in vitro cell programming provide exciting prospects for disease modeling, drug discovery and cell therapy. These applications frequently require efficient and clinically compliant tools for genetic modification of the cells. Recombinant adeno-associated viruses (AAVs) fulfill these prerequisites for a number of reasons, including the availability of a myriad of AAV capsid variants with distinct cell type specificity (also called tropism). Here, we harnessed a customizable parallel screening approach to assess a panel of natural or synthetic AAV capsid variants for their efficacy in lineage-related human neural cell types. We identified common lead candidates suited for the transduction of directly converted, early-stage induced neural stem cells (iNSCs), induced pluripotent stem cell (iPSC)-derived later-stage, radial glia-like neural progenitors, as well as differentiated astrocytic and mixed neuroglial cultures. We then selected a subset of these candidates for functional validation in iNSCs and iPSC-derived astrocytes, using shRNA-induced downregulation of the citrate transporter SLC25A1 and overexpression of the transcription factor NGN2 for proofs-of-concept. Our study provides a comparative overview of the susceptibility of different human cell programming-derived brain cell types to AAV transduction and a critical discussion of the assets and limitations of this specific AAV capsid screening approach.


Assuntos
Dependovirus , Transportadores de Ânions Orgânicos , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Terapia Genética , Vetores Genéticos/genética , Humanos , Proteínas Mitocondriais/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transdução Genética
12.
Cancers (Basel) ; 14(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35267438

RESUMO

Since it was discovered that many tumor types are vulnerable to inhibition of the DNA repair machinery, research towards efficient and selective inhibitors has accelerated. Amongst other enzymes, poly(ADP-ribose)-polymerase 1 (PARP1) was identified as a key player in this process, which resulted in the development of selective PARP inhibitors (PARPi) as anti-cancer drugs. Most small molecule PARPi's exhibit high affinity for both PARP1 and PARP2. PARPi are under clinical investigation for mono- and combination therapy in several cancer types and five PARPi are now clinically approved. In parallel, radiolabeled PARPi have emerged for non-invasive imaging of PARP1 expression. PARP imaging agents have been suggested as companion diagnostics, patient selection, and treatment monitoring tools to improve the outcome of PARPi therapy, but also as stand-alone diagnostics. We give a comprehensive overview over the preclinical development of PARP imaging agents, which are mostly based on the PARPi olaparib, rucaparib, and recently also talazoparib. We also report on the current status of clinical translation, which involves a growing number of early phase trials. Additionally, this work provides an insight into promising approaches of PARP-targeted radiotherapy based on Auger and α-emitting isotopes. Furthermore, the review covers synthetic strategies for PARP-targeted imaging and therapy agents that are compatible with large scale production and clinical translation.

13.
Inorg Chem ; 61(3): 1456-1470, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34995063

RESUMO

Indolo[2,3-d]benzazepines (indololatonduines) are rarely discussed in the literature. In this project, we prepared a series of novel indololatonduine derivatives and their RuII and OsII complexes and investigated their microtubule-targeting properties in comparison with paclitaxel and colchicine. Compounds were fully characterized by spectroscopic techniques (1H NMR and UV-vis), ESI mass-spectrometry, and X-ray crystallography, and their purity was confirmed by elemental analysis. The stabilities of the compounds in DMSO and water were confirmed by 1H and 13C NMR and UV-vis spectroscopy. Novel indololatonduines demonstrated anticancer activity in vitro in a low micromolar concentration range, while their coordination to metal centers resulted in a decrease of cytotoxicity. The preliminary in vivo activity of the RuII complex was investigated. Fluorescence staining and in vitro tubulin polymerization assays revealed the prepared compounds to have excellent microtubule-destabilizing activities, even more potent than the well-known microtubule-destabilizing agent colchicine.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Indóis/farmacologia , Microtúbulos/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos com 3 Anéis/química , Humanos , Indóis/química , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Microtúbulos/metabolismo , Modelos Moleculares , Estrutura Molecular , Polimerização/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
14.
Eur J Nucl Med Mol Imaging ; 49(4): 1136-1147, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34559266

RESUMO

PURPOSE: To develop a new probe for the αvß6-integrin and assess its potential for PET imaging of carcinomas. METHODS: Ga-68-Trivehexin was synthesized by trimerization of the optimized αvß6-integrin selective cyclic nonapeptide Tyr2 (sequence: c[YRGDLAYp(NMe)K]) on the TRAP chelator core, followed by automated labeling with Ga-68. The tracer was characterized by ELISA for activities towards integrin subtypes αvß6, αvß8, αvß3, and α5ß1, as well as by cell binding assays on H2009 (αvß6-positive) and MDA-MB-231 (αvß6-negative) cells. SCID-mice bearing subcutaneous xenografts of the same cell lines were used for dynamic (90 min) and static (75 min p.i.) µPET imaging, as well as for biodistribution (90 min p.i.). Structure-activity-relationships were established by comparison with the predecessor compound Ga-68-TRAP(AvB6)3. Ga-68-Trivehexin was tested for in-human PET/CT imaging of HNSCC, parotideal adenocarcinoma, and metastatic PDAC. RESULTS: Ga-68-Trivehexin showed a high αvß6-integrin affinity (IC50 = 0.047 nM), selectivity over other subtypes (IC50-based factors: αvß8, 131; αvß3, 57; α5ß1, 468), blockable uptake in H2009 cells, and negligible uptake in MDA-MB-231 cells. Biodistribution and preclinical PET imaging confirmed a high target-specific uptake in tumor and a low non-specific uptake in other organs and tissues except the excretory organs (kidneys and urinary bladder). Preclinical PET corresponded well to in-human results, showing high and persistent uptake in metastatic PDAC and HNSCC (SUVmax = 10-13) as well as in kidneys/urine. Ga-68-Trivehexin enabled PET/CT imaging of small PDAC metastases and showed high uptake in HNSCC but not in tumor-associated inflammation. CONCLUSIONS: Ga-68-Trivehexin is a valuable probe for imaging of αvß6-integrin expression in human cancers.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Pancreáticas , Animais , Linhagem Celular Tumoral , Radioisótopos de Gálio , Humanos , Integrina alfaVbeta3/metabolismo , Integrinas/metabolismo , Camundongos , Camundongos SCID , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Distribuição Tecidual , Neoplasias Pancreáticas
15.
J Nucl Med ; 63(6): 912-918, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34649941

RESUMO

Reflectance confocal microscopy (RCM) with endogenous backscattered contrast can noninvasively image basal cell carcinomas (BCCs) in skin. However, BCCs present with high nuclear density, and the relatively weak backscattering from nuclei imposes a fundamental limit on contrast, detectability, and diagnostic accuracy. We investigated PARPi-FL, an exogenous nuclear poly(adenosine diphosphate ribose) polymerase (PARP1)-targeted fluorescent contrast agent, and fluorescence confocal microscopy toward improving BCC diagnosis. Methods: We tested PARP1 expression in 95 BCC tissues using immunohistochemistry, followed by PARPi-FL staining in 32 fresh surgical BCC specimens. The diagnostic accuracy of PARPi-FL contrast was evaluated in 83 surgical specimens. The optimal parameters for permeability of PARPi-FL through intact skin was tested ex vivo on 5 human skin specimens and in vivo in 3 adult Yorkshire pigs. Results: We found significantly higher PARP1 expression and PARPi-FL binding in BCCs than in normal skin structures. Blinded reading of RCM-and-fluorescence confocal microscopy images by 2 experts demonstrated a higher diagnostic accuracy for BCCs with combined fluorescence and reflectance contrast than for RCM alone. Optimal parameters (time and concentration) for PARPi-FL transepidermal permeation through intact skin were successfully determined. Conclusion: Combined fluorescence and reflectance contrast may improve noninvasive BCC diagnosis with confocal microscopy.


Assuntos
Carcinoma Basocelular , Neoplasias Cutâneas , Animais , Carcinoma Basocelular/diagnóstico por imagem , Carcinoma Basocelular/patologia , Carcinoma Basocelular/cirurgia , Núcleo Celular/patologia , Imuno-Histoquímica , Microscopia Confocal/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Suínos
16.
Cancers (Basel) ; 13(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885066

RESUMO

For almost the entire period of the last two decades, translational research in the area of integrin-targeting radiopharmaceuticals was strongly focused on the subtype αvß3, owing to its expression on endothelial cells and its well-established role as a biomarker for, and promoter of, angiogenesis. Despite a large number of translated tracers and clinical studies, a clinical value of αvß3-integrin imaging could not be defined yet. The focus of research has, thus, been moving slowly but steadily towards other integrin subtypes which are involved in a large variety of tumorigenic pathways. Peptidic and non-peptidic radioligands for the integrins α5ß1, αvß6, αvß8, α6ß1, α6ß4, α3ß1, α4ß1, and αMß2 were first synthesized and characterized preclinically. Some of these compounds, targeting the subtypes αvß6, αvß8, and α6ß1/ß4, were subsequently translated into humans during the last few years. αvß6-Integrin has arguably attracted most attention because it is expressed by some of the cancers with the worst prognosis (above all, pancreatic ductal adenocarcinoma), which substantiates a clinical need for the respective theranostic agents. The receptor furthermore represents a biomarker for malignancy and invasiveness of carcinomas, as well as for fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and probably even for Sars-CoV-2 (COVID-19) related syndromes. Accordingly, the largest number of recent first-in-human applications has been reported for radiolabeled compounds targeting αvß6-integrin. The results indicate a substantial clinical value, which might lead to a paradigm change and trigger the replacement of αvß3 by αvß6 as the most popular integrin in theranostics.

17.
EJNMMI Res ; 11(1): 106, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636990

RESUMO

BACKGROUND: In the context of nuclear medicine and theranostics, integrin-related research and development was, for most of the time, focused predominantly on 'RGD peptides' and the subtype αvß3-integrin. However, there are no less than 24 known integrins, and peptides without the RGD sequence as well as non-peptidic ligands play an equally important role as selective integrin ligands. On the other hand, multimerization is a well-established method to increase the avidity of binding structures, but multimeric radiopharmaceuticals have not made their way into clinics yet. In this review, we describe how these aspects have been interwoven in the framework of the German Research Foundation's multi-group interdisciplinary funding scheme CRC 824, yielding a series of potent PET imaging agents for selective imaging of various integrin subtypes. RESULTS: The gallium-68 chelator TRAP was utilized to elaborate symmetrical trimers of various peptidic and non-peptidic integrin ligands. Preclinical data suggested a high potential of the resulting Ga-68-tracers for PET-imaging of the integrins α5ß1, αvß8, αvß6, and αvß3. For the first three, we provide some additional immunohistochemistry data in human cancers, which suggest several future clinical applications. Finally, application of αvß3- and αvß6-integrin tracers in pancreatic carcinoma patients revealed that unlike αvß3-targeted PET, αvß6-integrin PET is not characterized by off-target uptake and thus, enables a substantially improved imaging of this type of cancer. CONCLUSIONS: Novel radiopharmaceuticals targeting a number of different integrins, above all, αvß6, have proven their clinical potential and will play an increasingly important role in future theranostics.

19.
Eur J Nucl Med Mol Imaging ; 48(11): 3618-3630, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33954826

RESUMO

BACKGROUND: Visual inspection and biopsy is the current standard of care for oral cancer diagnosis, but is subject to misinterpretation and consequently to misdiagnosis. Topically applied PARPi-FL is a molecularly specific, fluorescent contrast-based approach that may fulfill the unmet need for a simple, in vivo, non-invasive, cost-effective, point-of-care method for the early diagnosis of oral cancer. Here, we present results from a phase I safety and feasibility study on fluorescent, topically applied PARPi-FL. Twelve patients with a histologically proven oral squamous cell carcinoma (OSCC) gargled a PARPi-FL solution for 60 s (15 mL, 100 nM, 250 nM, 500 nM, or 1000 nM), followed by gargling a clearing solution for 60 s. Fluorescence measurements of the lesion and surrounding oral mucosa were taken before PARPi-FL application, after PARPi-FL application, and after clearing. Blood pressure, oxygen levels, clinical chemistry, and CBC were obtained before and after tracer administration. RESULTS: PARPi-FL was well-tolerated by all patients without any safety concerns. When analyzing the fluorescence signal, all malignant lesions showed a significant differential in contrast after administration of PARPi-FL, with the highest increase occurring at the highest dose level (1000 nM), where all patients had a tumor-to-margin fluorescence signal ratio of >3. A clearing step was essential to increase signal specificity, as it clears unbound PARPi-FL trapped in normal anatomical structures. PARPi-FL tumor cell specificity was confirmed by ex vivo tabletop confocal microscopy. We have demonstrated that the fluorescence signal arose from the nuclei of tumor cells, endorsing our macroscopic findings. CONCLUSIONS: A PARPi-FL swish & spit solution is a rapid and non-invasive diagnostic tool that preferentially localizes fluorescent contrast to OSCC. This technique holds promise for the early detection of OSCC based on in vivo optical evaluation and targeted biopsy of suspicious lesions in the oral cavity. TRIAL REGISTRATION: Clinicaltrials.gov -NCT03085147, registered on March 21st, 2017.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Carcinoma de Células Escamosas/diagnóstico por imagem , Corantes Fluorescentes , Humanos , Neoplasias Bucais/diagnóstico por imagem , Poli(ADP-Ribose) Polimerase-1
20.
Cancers (Basel) ; 13(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916607

RESUMO

Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA