RESUMO
Two decades after the genomics revolution, oncology is rapidly transforming into a genome-driven discipline, yet routine cancer diagnostics is still mainly microscopy based, except for tumor type-specific predictive molecular tests. Pathology laboratories struggle to quickly validate and adopt biomarkers identified by genomics studies of new targeted therapies. Consequently, clinical implementation of newly approved biomarkers suffers substantial delays, leading to unequal patient access to these therapies. Whole-genome sequencing (WGS) can successfully address these challenges by providing a stable molecular diagnostic platform that allows detection of a multitude of genomic alterations in a single cost-efficient assay and facilitating rapid implementation, as well as by the development of new genomic biomarkers. Recently, the Whole-genome sequencing Implementation in standard Diagnostics for Every cancer patient (WIDE) study demonstrated that WGS is a feasible and clinically valid technique in routine clinical practice with a turnaround time of 11 workdays. As a result, WGS was successfully implemented at the Netherlands Cancer Institute as part of routine diagnostics in January 2021. The success of implementing WGS has relied on adhering to a comprehensive protocol including recording patient information, sample collection, shipment and storage logistics, sequencing data interpretation and reporting, integration into clinical decision-making and data usage. This protocol describes the use of fresh-frozen samples that are necessary for WGS but can be challenging to implement in pathology laboratories accustomed to using formalin-fixed paraffin-embedded samples. In addition, the protocol outlines key considerations to guide uptake of WGS in routine clinical care in hospitals worldwide.
Assuntos
Neoplasias , Humanos , Fluxo de Trabalho , Sequenciamento Completo do Genoma/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia , Genômica , BiomarcadoresRESUMO
PURPOSE: Genome sequencing (GS) enables comprehensive molecular analysis of tumors and identification of hereditary cancer predisposition. According to guidelines, directly determining pathogenic germline variants (PGVs) requires pretest genetic counseling, which is cost-ineffective. Referral for genetic counseling based on tumor variants alone could miss relevant PGVs and/or result in unnecessary referrals. METHODS: We validated GS for detection of germline variants and simulated 3 strategies using paired tumor-normal GS data of 937 metastatic patients. In strategy-1, genetic counseling before tumor testing allowed direct PGV analysis. In strategy-2 and -3, germline testing and referral for post-test genetic counseling is based on tumor variants using Dutch (strategy-2) or Europen Society for Medical Oncology (ESMO) Precision Medicine Working Group (strategy-3) guidelines. RESULTS: In strategy-1, PGVs would be detected in 50 patients (number-needed-to counsel; NTC = 18.7). In strategy-2, 86 patients would have been referred for genetic counseling and 43 would have PGVs (NTC = 2). In strategy-3, 94 patients would have been referred for genetic counseling and 32 would have PGVs (NTC = 2.9). Hence, 43 and 62 patients, respectively, were unnecessarily referred based on a somatic variant. CONCLUSION: Both post-tumor test counseling strategies (2 and 3) had significantly lower NTC, and strategy-2 had the highest PGV yield. Combining pre-tumor test mainstreaming and post-tumor test counseling may maximize the clinically relevant PGV yield and minimize unnecessary referrals.
Assuntos
Aconselhamento Genético , Neoplasias , Humanos , Testes Genéticos , Carga de Trabalho , Neoplasias/diagnóstico , Neoplasias/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa/genéticaRESUMO
Importance: Osteosarcoma, the most common malignant bone tumor in children and adolescents, occurs in a high number of cancer predisposition syndromes that are defined by highly penetrant germline mutations. The germline genetic susceptibility to osteosarcoma outside of familial cancer syndromes remains unclear. Objective: To investigate the germline genetic architecture of 1244 patients with osteosarcoma. Design, Setting, and Participants: Whole-exome sequencing (n = 1104) or targeted sequencing (n = 140) of the DNA of 1244 patients with osteosarcoma from 10 participating international centers or studies was conducted from April 21, 2014, to September 1, 2017. The results were compared with the DNA of 1062 individuals without cancer assembled internally from 4 participating studies who underwent comparable whole-exome sequencing and 27â¯173 individuals of non-Finnish European ancestry who were identified through the Exome Aggregation Consortium (ExAC) database. In the analysis, 238 high-interest cancer-susceptibility genes were assessed followed by testing of the mutational burden across 736 additional candidate genes. Principal component analyses were used to identify 732 European patients with osteosarcoma and 994 European individuals without cancer, with outliers removed for patient-control group comparisons. Patients were subsequently compared with individuals in the ExAC group. All data were analyzed from June 1, 2017, to July 1, 2019. Main Outcomes and Measures: The frequency of rare pathogenic or likely pathogenic genetic variants. Results: Among 1244 patients with osteosarcoma (mean [SD] age at diagnosis, 16 [8.9] years [range, 2-80 years]; 684 patients [55.0%] were male), an analysis restricted to individuals with European ancestry indicated a significantly higher pathogenic or likely pathogenic variant burden in 238 high-interest cancer-susceptibility genes among patients with osteosarcoma compared with the control group (732 vs 994, respectively; P = 1.3 × 10-18). A pathogenic or likely pathogenic cancer-susceptibility gene variant was identified in 281 of 1004 patients with osteosarcoma (28.0%), of which nearly three-quarters had a variant that mapped to an autosomal-dominant gene or a known osteosarcoma-associated cancer predisposition syndrome gene. The frequency of a pathogenic or likely pathogenic cancer-susceptibility gene variant was 128 of 1062 individuals (12.1%) in the control group and 2527 of 27â¯173 individuals (9.3%) in the ExAC group. A higher than expected frequency of pathogenic or likely pathogenic variants was observed in genes not previously linked to osteosarcoma (eg, CDKN2A, MEN1, VHL, POT1, APC, MSH2, and ATRX) and in the Li-Fraumeni syndrome-associated gene, TP53. Conclusions and Relevance: In this study, approximately one-fourth of patients with osteosarcoma unselected for family history had a highly penetrant germline mutation requiring additional follow-up analysis and possible genetic counseling with cascade testing.
Assuntos
Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Osteossarcoma/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Mosaic protein truncating variants (PTVs) in the phosphatase, Mg2+/Mn2+dependent 1D (PPM1D) gene in blood-derived DNA have been associated with increased risk of breast cancer. We analyzed PPM1D PTVs in blood from 3817 breast cancer cases and 3058 controls by deep sequencing of a previously defined region in exon 6 of PPM1D. We identified 50 of 6875 (0.73%) participants having a mosaic PPM1D PTV. We observed a higher frequency of mosaic PPM1D PTVs with increasing age (Ptrend = 2.9 × 10-6). We did not observe an overall association between PPM1D PTVs and increased breast cancer risk (OR = 1.51, 95% CI = 0.84-2.71). Evidence for an association was observed in a subset of cases with DNA collected 1-year or more before breast cancer diagnosis (OR = 3.44, 95% CI = 1.62-7.30, P-value = 0.001); however, no significant association was observed for the larger series of cases with DNA collected post diagnosis (OR = 1.01, 95% CI = 0.51-2.01, P-value = 0.98). Our study indicates that the PPM1D PTVs are present at higher rates than previously reported and the frequency of PPM1D PTVs increases with age. We observed limited evidence for an association between mosaic PPM1D PTVs and breast cancer risk, suggesting mosaic PPM1D PTVs in the blood likely do not influence risk of breast cancer.
Assuntos
Envelhecimento/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença , Proteína Fosfatase 2C/genética , Idoso , Envelhecimento/patologia , Neoplasias da Mama/patologia , Éxons , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Mutação , Fatores de RiscoRESUMO
This corrects the article DOI: 10.1038/ncomms15034.
RESUMO
Survival rates for osteosarcoma, the most common primary bone cancer, have changed little over the past three decades and are particularly low for patients with metastatic disease. We conducted a multi-institutional genome-wide association study (GWAS) to identify germline genetic variants associated with overall survival in 632 patients with osteosarcoma, including 523 patients of European ancestry and 109 from Brazil. We conducted a time-to-event analysis and estimated hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards models, with and without adjustment for metastatic disease. The results were combined across the European and Brazilian case sets using a random-effects meta-analysis. The strongest association after meta-analysis was for rs3765555 at 9p24.1, which was inversely associated with overall survival (HR = 1.76; 95% CI 1.41-2.18, p = 4.84 × 10-7 ). After imputation across this region, the combined analysis identified two SNPs that reached genome-wide significance. The strongest single association was with rs55933544 (HR = 1.9; 95% CI 1.5-2.4; p = 1.3 × 10-8 ), which localizes to the GLDC gene, adjacent to the IL33 gene and was consistent across both the European and Brazilian case sets. Using publicly available data, the risk allele was associated with lower expression of IL33 and low expression of IL33 was associated with poor survival in an independent set of patients with osteosarcoma. In conclusion, we have identified the GLDC/IL33 locus on chromosome 9p24.1 as associated with overall survival in patients with osteosarcoma. Further studies are needed to confirm this association and shed light on the biological underpinnings of this susceptibility locus.
Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/mortalidade , Interleucina-33/genética , Osteossarcoma/genética , Osteossarcoma/mortalidade , Adulto , Alelos , Brasil , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Modelos de Riscos Proporcionais , Taxa de Sobrevida , População Branca/genéticaRESUMO
Li-Fraumeni syndrome (LFS) is an autosomal-dominant cancer predisposition disorder associated with pathogenic germline variants in TP53, with a high penetrance over an individual's lifetime. The actual population prevalence of pathogenic germline TP53 mutations is still unclear, most likely due to biased selection of cancer affected families. The aim of this study was to estimate the population prevalence of potentially pathogenic TP53 exonic variants in three sequencing databases, totaling 63,983 unrelated individuals. Potential pathogenicity was defined using an original algorithm combining bioinformatic prediction tools, suggested clinical significance, and functional data. We identified 34 different potentially pathogenic TP53 variants in 131 out of 63,983 individuals (0.2%). Twenty-eight (82%) of these variants fell within the DNA-binding domain of TP53, with an enrichment for specific variants that were not previously identified as LFS mutation hotspots, such as the p.R290H and p.N235S variants. Our findings reveal that the population prevalence of potentially pathogenic TP53 variants may be up to 10 times higher than previously estimated from family-based studies. These results point to the need for further studies aimed at evaluating cancer penetrance modifiers as well as the risk associated between cancer and rare TP53 variants.
Assuntos
Bases de Dados Genéticas , Exoma/genética , Variação Genética , Síndrome de Li-Fraumeni/genética , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Família , Feminino , Genótipo , Mutação em Linhagem Germinativa , Humanos , Pessoa de Meia-Idade , Penetrância , Prevalência , Sequenciamento do ExomaRESUMO
Genome wide association studies (GWAS) have mapped multiple independent cancer susceptibility loci to chr5p15.33. Here, we show that fine-mapping of pancreatic and testicular cancer GWAS within one of these loci (Region 2 in CLPTM1L) focuses the signal to nine highly correlated SNPs. Of these, rs36115365-C associated with increased pancreatic and testicular but decreased lung cancer and melanoma risk, and exhibited preferred protein-binding and enhanced regulatory activity. Transcriptional gene silencing of this regulatory element repressed TERT expression in an allele-specific manner. Proteomic analysis identifies allele-preferred binding of Zinc finger protein 148 (ZNF148) to rs36115365-C, further supported by binding of purified recombinant ZNF148. Knockdown of ZNF148 results in reduced TERT expression, telomerase activity and telomere length. Our results indicate that the association with chr5p15.33-Region 2 may be explained by rs36115365, a variant influencing TERT expression via ZNF148 in a manner consistent with elevated TERT in carriers of the C allele.
Assuntos
Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Melanoma/genética , Neoplasias Pancreáticas/genética , Neoplasias Cutâneas/genética , Telomerase/genética , Neoplasias Testiculares/genética , Fatores de Transcrição/genética , Alelos , Linhagem Celular Tumoral , Mapeamento Cromossômico , Cromossomos Humanos Par 5 , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Feminino , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Melanoma/metabolismo , Melanoma/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Polimorfismo de Nucleotídeo Único , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Telomerase/antagonistas & inibidores , Telomerase/metabolismo , Homeostase do Telômero , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismoRESUMO
UNLABELLED: Metastasis is the leading cause of death in patients with osteosarcoma, the most common pediatric bone malignancy. We conducted a multistage genome-wide association study of osteosarcoma metastasis at diagnosis in 935 osteosarcoma patients to determine whether germline genetic variation contributes to risk of metastasis. We identified an SNP, rs7034162, in NFIB significantly associated with metastasis in European osteosarcoma cases, as well as in cases of African and Brazilian ancestry (meta-analysis of all cases: P = 1.2 × 10(-9); OR, 2.43; 95% confidence interval, 1.83-3.24). The risk allele was significantly associated with lowered NFIB expression, which led to increased osteosarcoma cell migration, proliferation, and colony formation. In addition, a transposon screen in mice identified a significant proportion of osteosarcomas harboring inactivating insertions in Nfib and with lowered NFIB expression. These data suggest that germline genetic variation at rs7034162 is important in osteosarcoma metastasis and that NFIB is an osteosarcoma metastasis susceptibility gene. SIGNIFICANCE: Metastasis at diagnosis in osteosarcoma is the leading cause of death in these patients. Here we show data that are supportive for the NFIB locus as associated with metastatic potential in osteosarcoma.
Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Variação Genética , Estudo de Associação Genômica Ampla , Fatores de Transcrição NFI/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Alelos , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Cromossomos Humanos Par 9 , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Ligação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Desequilíbrio de Ligação , Camundongos , Mutagênese Insercional , Metástase Neoplásica , Polimorfismo de Nucleotídeo Único , Locos de Características QuantitativasRESUMO
Genome-wide association (GWA) studies of testicular germ cell tumor (TGCT) have identified 18 susceptibility loci, some containing genes encoding proteins important in male germ cell development. Deletions of one of these genes, DMRT1, lead to male-to-female sex reversal and are associated with development of gonadoblastoma. To further explore genetic association with TGCT, we undertook a pathway-based analysis of SNP marker associations in the Penn GWAs (349 TGCT cases and 919 controls). We analyzed a custom-built sex determination gene set consisting of 32 genes using three different methods of pathway-based analysis. The sex determination gene set ranked highly compared with canonical gene sets, and it was associated with TGCT (FDRG = 2.28 × 10(-5), FDRM = 0.014 and FDRI = 0.008 for Gene Set Analysis-SNP (GSA-SNP), Meta-Analysis Gene Set Enrichment of Variant Associations (MAGENTA) and Improved Gene Set Enrichment Analysis for Genome-wide Association Study (i-GSEA4GWAS) analysis, respectively). The association remained after removal of DMRT1 from the gene set (FDRG = 0.0002, FDRM = 0.055 and FDRI = 0.009). Using data from the NCI GWA scan (582 TGCT cases and 1056 controls) and UK scan (986 TGCT cases and 4946 controls), we replicated these findings (NCI: FDRG = 0.006, FDRM = 0.014, FDRI = 0.033, and UK: FDRG = 1.04 × 10(-6), FDRM = 0.016, FDRI = 0.025). After removal of DMRT1 from the gene set, the sex determination gene set remains associated with TGCT in the NCI (FDRG = 0.039, FDRM = 0.050 and FDRI = 0.055) and UK scans (FDRG = 3.00 × 10(-5), FDRM = 0.056 and FDRI = 0.044). With the exception of DMRT1, genes in the sex determination gene set have not previously been identified as TGCT susceptibility loci in these GWA scans, demonstrating the complementary nature of a pathway-based approach for genome-wide analysis of TGCT.
Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Embrionárias de Células Germinativas/genética , Processos de Determinação Sexual , Neoplasias Testiculares/genética , Estudos de Casos e Controles , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genéticaRESUMO
We conducted a meta-analysis to identify new susceptibility loci for testicular germ cell tumor (TGCT). In the discovery phase, we analyzed 931 affected individuals and 1,975 controls from 3 genome-wide association studies (GWAS). We conducted replication in 6 independent sample sets comprising 3,211 affected individuals and 7,591 controls. In the combined analysis, risk of TGCT was significantly associated with markers at four previously unreported loci: 4q22.2 in HPGDS (per-allele odds ratio (OR) = 1.19, 95% confidence interval (CI) = 1.12-1.26; P = 1.11 × 10(-8)), 7p22.3 in MAD1L1 (OR = 1.21, 95% CI = 1.14-1.29; P = 5.59 × 10(-9)), 16q22.3 in RFWD3 (OR = 1.26, 95% CI = 1.18-1.34; P = 5.15 × 10(-12)) and 17q22 (rs9905704: OR = 1.27, 95% CI = 1.18-1.33; P = 4.32 × 10(-13) and rs7221274: OR = 1.20, 95% CI = 1.12-1.28; P = 4.04 × 10(-9)), a locus that includes TEX14, RAD51C and PPM1E. These new TGCT susceptibility loci contain biologically plausible genes encoding proteins important for male germ cell development, chromosomal segregation and the DNA damage response.
Assuntos
Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética , Algoritmos , Estudos de Casos e Controles , Cromossomos Humanos , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Masculino , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Fatores de RiscoRESUMO
Genome-wide association studies (GWASs) have identified multiple common genetic variants associated with an increased risk of testicular germ cell tumors (TGCTs). A previous GWAS reported a possible TGCT susceptibility locus on chromosome 1q23 in the UCK2 gene, but failed to reach genome-wide significance following replication. We interrogated this region by conducting a meta-analysis of two independent GWASs including a total of 940 TGCT cases and 1559 controls for 122 single-nucleotide polymorphisms (SNPs) on chromosome 1q23 and followed up the most significant SNPs in an additional 2202 TGCT cases and 2386 controls from four case-control studies. We observed genome-wide significant associations for several UCK2 markers, the most significant of which was for rs3790665 (PCombined = 6.0 × 10(-9)). Additional support is provided from an independent familial study of TGCT where a significant over-transmission for rs3790665 with TGCT risk was observed (PFBAT = 2.3 × 10(-3)). Here, we provide substantial evidence for the association between UCK2 genetic variation and TGCT risk.
Assuntos
Cromossomos Humanos Par 1 , Loci Gênicos , Predisposição Genética para Doença , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética , Uridina Quinase/genética , Estudos de Casos e Controles , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Recombinação GenéticaRESUMO
In murine testicular cancer (TC) cells wild-type p53 contributes to sensitivity to DNA-damaging drugs in a dose-dependent way. In human TC, however, the role of wild-type p53 functionality in chemotherapeutic response remains elusive. We analyzed functionality of wild-type p53 in cisplatin sensitivity in the human TC setting using a p53 short interfering (si)RNA approach. The cisplatin-sensitive TC cell line (Tera), the subline with acquired cisplatin resistance (Tera-CP) and a panel of intrinsically resistant TC cell lines (Scha and 2102EP), all expressing wild-type p53, were used. p53 and p53 transcriptional targets MDM2 and p21 (Waf1/Cip1) (p21) were expressed in a p53 transactivation-dependent way in all TC cell lines. Following cisplatin exposure, expression levels of p53 increased, with a subsequent increase in MDM2 and p21 mRNA and protein levels and Fas cell membrane levels. Downregulation of p53 with siRNA lowered cisplatin-induced apoptosis in Tera and Tera-CP, which was associated with a diminished Fas membrane expression. In contrast, p53 suppression augmented cisplatin-induced apoptosis in Scha and 2102EP and concomitantly strongly suppressed MDM2 and p21 mRNA and protein expression. Our results indicate that p53 is involved in transactivation of pro- and anti-apoptotic genes in untreated and cisplatin-treated TC cells, but subtle differences are present between TC cell lines. The opposite role of p53 in cisplatin-induced apoptosis among TC cell lines demonstrates the importance of the cellular context for the p53 transactivation phenotype in TC cells.
Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Neoplasias Testiculares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Humanos , Masculino , Proteínas Proto-Oncogênicas c-mdm2/genética , Neoplasias Testiculares/genética , Proteína Supressora de Tumor p53/genéticaRESUMO
Hodgkin's lymphoma (HL) is a B cell-derived lymphoma characterized by a minority of malignant Hodgkin Reed-Sternberg (HRS) cells that have lost their normal B cell phenotype. Alterations in the cell cycle and apoptosis pathways might contribute to their resistance to apoptosis and sustained cell cycle progression. A key player in both cell cycle arrest and apoptosis is CDKN1A, encoding p21$^{{\rm{waf/cip1}}}$ (p21). P21 is regulated by p53 and can function as a cell cycle inhibitor when in the nucleus or as an apoptosis inhibitor when localized in the cytoplasm. We observed expression of p53, p21 and p-p21 in a variable number of HRS cells in 24 of 40 cases. Expression of miR-17 and miR-106a was detected in HRS cells of 10 HL cases. MiR-17/106b seed family members, CDKN1A RNA and p21 protein levels were variable in HL cell lines. We showed effective targeting of the CDKN1A 3' UTR by miR-17/106b in HL cell lines in a luciferase reporter assay and up-regulation of p21 protein levels upon anti-miR-17 treatment of KM-H2 cells. Functional studies indicated a p21-mediated G(1) arrest after miR-17/106b down-regulation in KM-H2, whereas no G(1) arrest was observed for U-HO1 and L428. This difference could not be explained by differences in the 3' UTR, the cellular location of p21 or expression variation during cell cycle progression. A strong correlation was observed for the miR-17/106b:CDKN1A ratio and the responsiveness to miR-17 inhibition, ie a low ratio in KM-H2 and an extremely high ratio in the two unresponsive HL cell lines. In conclusion, we show that miR-17/106b regulates p21 protein levels in HL and that the effect of miR-17/106b-mediated inhibition depends on the miRNA : target gene ratio. Thus, in HL high miR-17/106b expression contributes to a dysfunctional p53 pathway and thereby also to the malignant phenotype.
Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica , Doença de Hodgkin/genética , MicroRNAs/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citometria de Fluxo , Marcação de Genes , Doença de Hodgkin/metabolismo , Doença de Hodgkin/patologia , Humanos , Hibridização In Situ/métodos , MicroRNAs/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
TNF-related apoptosis-inducing ligand (TRAIL) receptor agonistic agents and non-steroidal anti-inflammatory drugs (NSAIDs) are interesting agents for the chemoprevention and treatment of colorectal cancer. We investigated whether NSAIDs sensitize colon cancer and adenoma cell lines and ex vivo cultured human adenomas to recombinant human (rh)TRAIL. Involvement of the crucial Wnt signalling pathway in the sensitization of colon cancer cells was examined. Five colon cancer and two adenoma cell lines, human ex vivo adenomas and normal colonic epithelium were treated with aspirin or sulindac combined with rhTRAIL. Apoptosis levels, expression of intracellular proteins and TRAIL receptor membrane expression were assessed. Ls174T cells stably transfected with an inducible dominant negative TCF-4 (dnTCF-4) construct served to analyse the role of Wnt pathway activation. Both rhTRAIL-sensitive and -resistant colon cancer cell lines were strongly sensitized to rhTRAIL by aspirin (maximum enhancement ratio, 7.1). Remarkably, in adenoma cell lines sulindac enhanced rhTRAIL-induced apoptosis most effectively (maximum enhancement ratio, 2.5). Although membrane TRAIL receptor expression was not affected by NSAIDs, caspase-8 activation was enhanced by combinational treatment. Several proteins from different biological pathways were affected by NSAIDs, indicating complex mechanisms of sensitization. Elimination of TCF-4 completely blocked the sensitizing effect in colon cancer cells. In ex vivo adenomas the combination of sulindac and rhTRAIL increased apoptosis from 18.4% (sulindac) and 17.8% (rhTRAIL) to 28.0% (p = 0.003 and p = 0.005, respectively). It was concluded that NSAID-induced sensitization to rhTRAIL requires TCF-4 activity. Thus, the combination of TRAIL-receptor agonistic agents and NSAIDs is a potentially attractive treatment option for (pre)malignant tumours with constitutively active Wnt signalling, such as colorectal tumours.
Assuntos
Adenoma/patologia , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Neoplasias do Colo/patologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Adenoma/metabolismo , Adulto , Idoso , Apoptose/efeitos dos fármacos , Aspirina/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Células CACO-2 , Colo/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Sinergismo Farmacológico , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulindaco/farmacologia , Fator de Transcrição 4 , Fatores de Transcrição/fisiologia , Células Tumorais Cultivadas , Proteínas Wnt/fisiologiaRESUMO
Platinum-based chemotherapies such as cisplatin are used as first-line treatment for many cancers. Although there is often a high initial responsiveness, the majority of patients eventually relapse with platinum-resistant disease. For example, a subset of testicular cancer patients still die even though testicular cancer is considered a paradigm of cisplatin-sensitive solid tumors, but the mechanisms of chemoresistance remain elusive. Here, we have shown that one key determinant of cisplatin-resistance in testicular embryonal carcinoma (EC) is high cytoplasmic expression of the cyclin-dependent kinase (CDK) inhibitor p21. The EC component of the majority of refractory testicular cancer patients exhibited high cytoplasmic p21 expression, which protected EC cell lines against cisplatin-induced apoptosis via CDK2 inhibition. Localization of p21 in the cytoplasm was critical for cisplatin resistance, since relocalization of p21 to the nucleus by Akt inhibition sensitized EC cell lines to cisplatin. We also demonstrated in EC cell lines and human tumor tissue that high cytoplasmic p21 expression and cisplatin resistance of EC were inversely associated with the expression of Oct4 and miR-106b seed family members. Thus, targeting cytoplasmic p21, including by modulation of the Oct4/miR-106b/p21 pathway, may offer new strategies for the treatment of chemoresistant testicular and other types of cancer.
Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/análise , Citoplasma/química , Neoplasias Testiculares/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cromonas/farmacologia , Quinase 2 Dependente de Ciclina/análise , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , MicroRNAs/fisiologia , Morfolinas/farmacologia , Fator 3 de Transcrição de Octâmero/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Neoplasias Testiculares/patologiaRESUMO
The RET proto-oncogene encodes a receptor tyrosine kinase whose dysfunction plays a crucial role in the development of several neural crest disorders. Distinct activating RET mutations cause multiple endocrine neoplasia type 2A (MEN2A), type 2B (MEN2B), and familial medullary thyroid carcinoma (FMTC). Despite clear correlations between the mutations found in these cancer syndromes and their phenotypes, the molecular mechanisms connecting the mutated receptor to the different disease phenotypes are far from completely understood. Luciferase reporter assays in combination with immunoprecipitations, and Western and immunohistochemistry analyses were done in order to characterize the signaling properties of two FMTC-associated RET mutations, Y791F and S891A, respectively, both affecting the tyrosine kinase domain of the receptor. We show that these RET-FMTC mutants are monomeric receptors which are autophosphorylated and activated independently of glial cell line-derived neurotrophic factor. Moreover, we show that the dysfunctional signaling properties of these mutants, when compared with wild-type RET, involve constitutive activation of signal transducers and activators of transcription 3 (STAT3). Furthermore, we show that STAT3 activation is mediated by a signaling pathway involving Src, JAK1, and JAK2, differing from STAT3 activation promoted by RET(C634R) which was previously found to be independent of Src and JAKs. Three-dimensional modeling of the RET catalytic domain suggested that the structural changes promoted by the respective amino acids substitutions lead to a more accessible substrate and ATP-binding monomeric conformation. Finally, immunohistochemical analysis of FMTC tumor samples support the in vitro data, because nuclear localized, Y705-phosphorylated STAT3, as well as a high degree of RET expression at the plasma membrane was observed.