Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
EMBO Mol Med ; 16(4): 805-822, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504136

RESUMO

For 15 years, gene therapy has been viewed as a beacon of hope for inherited retinal diseases. Many preclinical investigations have centered around vectors with maximal gene expression capabilities, yet despite efficient gene transfer, minimal physiological improvements have been observed in various ciliopathies. Retinitis pigmentosa-type 28 (RP28) is the consequence of bi-allelic null mutations in the FAM161A, an essential protein for the structure of the photoreceptor connecting cilium (CC). In its absence, cilia become disorganized, leading to outer segment collapses and vision impairment. Within the human retina, FAM161A has two isoforms: the long one with exon 4, and the short one without it. To restore CC in Fam161a-deficient mice shortly after the onset of cilium disorganization, we compared AAV vectors with varying promoter activities, doses, and human isoforms. While all vectors improved cell survival, only the combination of both isoforms using the weak FCBR1-F0.4 promoter enabled precise FAM161A expression in the CC and enhanced retinal function. Our investigation into FAM161A gene replacement for RP28 emphasizes the importance of precise therapeutic gene regulation, appropriate vector dosing, and delivery of both isoforms. This precision is pivotal for secure gene therapy involving structural proteins like FAM161A.


Assuntos
Retinose Pigmentar , Animais , Camundongos , Humanos , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Retina/metabolismo , Éxons , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Terapia Genética , Proteínas do Olho/genética , Proteínas do Olho/química , Proteínas do Olho/metabolismo
2.
Mol Ther ; 31(10): 2948-2961, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37580905

RESUMO

Photoreceptor cell degeneration and death is the major hallmark of a wide group of human blinding diseases including age-related macular degeneration and inherited retinal diseases such as retinitis pigmentosa. In recent years, inherited retinal diseases have become the "testing ground" for novel therapeutic modalities, including gene and cell-based therapies. Currently there is no available treatment for retinitis pigmentosa caused by FAM161A biallelic pathogenic variants. In this study, we injected an adeno-associated virus encoding for the longer transcript of mFam161a into the subretinal space of P24-P29 Fam161a knockout mice to characterize the safety and efficacy of gene augmentation therapy. Serial in vivo assessment of retinal function and structure at 3, 6, and 8 months of age using the optomotor response test, full-field electroretinography, fundus autofluorescence, and optical coherence tomography imaging as well as ex vivo quantitative histology and immunohistochemical studies revealed a significant structural and functional rescue effect in treated eyes accompanied by expression of the FAM161A protein in photoreceptors. The results of this study may serve as an important step toward future application of gene augmentation therapy in FAM161A-deficient patients by identifying a promising isoform to rescue photoreceptors and their function.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Camundongos , Animais , Humanos , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Degeneração Retiniana/patologia , Camundongos Knockout , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Retina/metabolismo , Eletrorretinografia
3.
Pharmaceutics ; 14(8)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36015231

RESUMO

This review offers the basics of lentiviral vector technologies, their advantages and pitfalls, and an overview of their use in the field of ophthalmology. First, the description of the global challenges encountered to develop safe and efficient lentiviral recombinant vectors for clinical application is provided. The risks and the measures taken to minimize secondary effects as well as new strategies using these vectors are also discussed. This review then focuses on lentiviral vectors specifically designed for ocular therapy and goes over preclinical and clinical studies describing their safety and efficacy. A therapeutic approach using lentiviral vector-mediated gene therapy is currently being developed for many ocular diseases, e.g., aged-related macular degeneration, retinopathy of prematurity, inherited retinal dystrophies (Leber congenital amaurosis type 2, Stargardt disease, Usher syndrome), glaucoma, and corneal fibrosis or engraftment rejection. In summary, this review shows how lentiviral vectors offer an interesting alternative for gene therapy in all ocular compartments.

4.
PLoS Biol ; 20(6): e3001649, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35709082

RESUMO

Inherited retinal degeneration due to loss of photoreceptor cells is a leading cause of human blindness. These cells possess a photosensitive outer segment linked to the cell body through the connecting cilium (CC). While structural defects of the CC have been associated with retinal degeneration, its nanoscale molecular composition, assembly, and function are barely known. Here, using expansion microscopy and electron microscopy, we reveal the molecular architecture of the CC and demonstrate that microtubules are linked together by a CC inner scaffold containing POC5, CENTRIN, and FAM161A. Dissecting CC inner scaffold assembly during photoreceptor development in mouse revealed that it acts as a structural zipper, progressively bridging microtubule doublets and straightening the CC. Furthermore, we show that Fam161a disruption in mouse leads to specific CC inner scaffold loss and triggers microtubule doublet spreading, prior to outer segment collapse and photoreceptor degeneration, suggesting a molecular mechanism for a subtype of retinitis pigmentosa.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Cílios , Proteínas do Olho , Camundongos , Microtúbulos
5.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502238

RESUMO

Inherited retinal dystrophies (IRD) are due to various gene mutations. Each mutated gene instigates a specific cell homeostasis disruption, leading to a modification in gene expression and retinal degeneration. We previously demonstrated that the polycomb-repressive complex-1 (PRC1) markedly contributes to the cell death process. To better understand these mechanisms, we herein study the role of PRC2, specifically EZH2, which often initiates the gene inhibition by PRC1. We observed that the epigenetic mark H3K27me3 generated by EZH2 was progressively and strongly expressed in some individual photoreceptors and that the H3K27me3-positive cell number increased before cell death. H3K27me3 accumulation occurs between early (accumulation of cGMP) and late (CDK4 expression) events of retinal degeneration. EZH2 hyperactivity was observed in four recessive and two dominant mouse models of retinal degeneration, as well as two dog models and one IRD patient. Acute pharmacological EZH2 inhibition by intravitreal injection decreased the appearance of H3K27me3 marks and the number of TUNEL-positive cells revealing that EZH2 contributes to the cell death process. Finally, we observed that the absence of the H3K27me3 mark is a biomarker of gene therapy treatment efficacy in XLRPA2 dog model. PRC2 and PRC1 are therefore important actors in the degenerative process of multiple forms of IRD.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Proteínas do Olho/fisiologia , Complexo Repressor Polycomb 1/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/patologia , Animais , Metilação de DNA , Cães , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/etiologia , Retinose Pigmentar/metabolismo
6.
Sci Rep ; 11(1): 9549, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953266

RESUMO

Rods, cones and melanopsin contribute in various proportions, depending on the stimulus light, to the pupil light response. This study used a first derivative analysis to focus on the quantification of the dynamics of pupillary dilation that immediately follows light-induced pupilloconstriction in order to identify novel parameters that reflect rod and cone activity. In 18 healthy adults, the pupil response to a 1 s blue light stimulus ranging from - 6.0 to 2.65 log cd/m2 in dark-adapted conditions and to a 1 s blue light stimulus (2.65 log cd/m2) in light-adapted conditions was recorded on a customized pupillometer. Three derivative parameters which describe the 2.75 s following the light onset were quantified: dAMP (maximal amplitude of the positive peak), dLAT (latency of the positive peak), dAUC (area under the curve of the positive peak). We found that dAMP and dAUC but not dLAT have graded responses over a range of light intensities. The maximal positive value of dAMP, representing maximal rate of change of early pupillary dilation phase, occurs at - 1.0 log cd/m2 and this stimulus intensity appears useful for activating rods and cones. From - 0.5 log cd/m2 to brighter intensities dAMP and dAUC progressively decrease, reaching negligible values at 2.65 log cd/m2 indicative of a melanopsin-driven pupil response that masks the contribution from rods and cones to the early phase of pupillary dilation.


Assuntos
Pupila/fisiologia , Reflexo Pupilar , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Adulto , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Opsinas de Bastonetes/metabolismo
7.
Sci Rep ; 11(1): 2030, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479377

RESUMO

FAM161A mutations are the most common cause of inherited retinal degenerations in Israel. We generated a knockout (KO) mouse model, Fam161atm1b/tm1b, lacking the major exon #3 which was replaced by a construct that include LacZ under the expression of the Fam161a promoter. LacZ staining was evident in ganglion cells, inner and outer nuclear layers and inner and outer-segments of photoreceptors in KO mice. No immunofluorescence staining of Fam161a was evident in the KO retina. Visual acuity and electroretinographic (ERG) responses showed a gradual decrease between the ages of 1 and 8 months. Optical coherence tomography (OCT) showed thinning of the whole retina. Hypoautofluorescence and hyperautofluorescence pigments was observed in retinas of older mice. Histological analysis revealed a progressive degeneration of photoreceptors along time and high-resolution transmission electron microscopy (TEM) analysis showed that photoreceptor outer segment disks were disorganized in a perpendicular orientation and outer segment base was wider and shorter than in WT mice. Molecular degenerative markers, such as microglia and CALPAIN-2, appear already in a 1-month old KO retina. These results indicate that a homozygous Fam161a frameshift mutation affects retinal function and causes retinal degeneration. This model will be used for gene therapy treatment in the future.


Assuntos
Calpaína/genética , Proteínas do Olho/genética , Retina/diagnóstico por imagem , Degeneração Retiniana/genética , Animais , Modelos Animais de Doenças , Eletrorretinografia , Mutação da Fase de Leitura/genética , Humanos , Óperon Lac/genética , Camundongos , Camundongos Knockout , Retina/patologia , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Tomografia de Coerência Óptica , Acuidade Visual/genética
8.
Front Neurosci ; 14: 571293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324144

RESUMO

PURPOSE: was to create an in vitro model of human retinal detachment (RD) to study the mechanisms of photoreceptor death. METHODS: Human retinas were obtained through eye globe donations for research purposes and cultivated as explants. Cell death was investigated in retinas with (control) and without retinal pigment epithelium (RPE) cells to mimic RD. Tissues were studied at different time points and immunohistological analyses for TUNEL, Cleaved caspase3, AIF, CDK4 and the epigenetic mark H3K27me3 were performed. Human and monkey eye globes with retinal detachment served as controls. RESULTS: The number of TUNEL-positive cells, compared between 1 and 7 days, increased with time in both retinas with RPE (from 1.2 ± 0.46 to 8 ± 0.89, n = 4) and without RPE (from 2.6 ± 0.73 to 16.3 ± 1.27, p < 0.014). In the group without RPE, cell death peaked at day 3 (p = 0.014) and was high until day 7. Almost no Cleaved-Caspase3 signal was observed, whereas a transient augmentation at day 3 of AIF-positive cells was observed to be about 10-fold in comparison to the control group (n = 2). Few CDK4-positive cells were found in both groups, but significantly more in the RD group at day 7 (1.8 ± 0.24 vs. 4.7 ± 0.58, p = 0.014). The H3K27me3 mark increased by 7-fold after 5 days in the RD group (p = 0.014) and slightly decreased at day 7 and was also observed to be markedly increased in human and monkey detached retina samples. CONCLUSION: AIF expression coincides with the first peak of cell death, whereas the H3K27me3 mark increases during the cell death plateau, suggesting that photoreceptor death is induced by different successive pathways after RD. This in vitro model should permit the identification of neuroprotective drugs with clinical relevance.

9.
Sci Rep ; 10(1): 8890, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483256

RESUMO

The retinal pigment epithelium (RPE) is a monolayer of cobblestone-like epithelial cells that accomplishes critical functions for the retina. Several protocols have been published to differentiate pluripotent stem cells into RPE cells suitable for disease modelling and therapy development. In our study, the RPE identity of human induced pluripotent stem cell (hiPSC)-derived RPE (iRPE) was extensively characterized, and then used to test a lentiviral-mediated RPE65 gene augmentation therapy. A dose study of the lentiviral vector revealed a dose-dependent effect of the vector on RPE65 mRNA levels. A marked increase of the RPE65 mRNA was also observed in the iRPE (100-fold) as well as in an experimental set with RPE derived from another hiPSC source and from foetal human RPE. Although iRPE displayed features close to bona fide RPE, no or a modest increase of the RPE65 protein level was observed depending on the protein detection method. Similar results were observed with the two other cell lines. The mechanism of RPE65 protein regulation remains to be elucidated, but the current work suggests that high vector expression will not produce an excess of the normal RPE65 protein level.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Epitélio Pigmentado da Retina/citologia , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Técnicas de Transferência de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lentivirus/genética , RNA Mensageiro/metabolismo , Epitélio Pigmentado da Retina/embriologia , Epitélio Pigmentado da Retina/metabolismo , Regulação para Cima
10.
Front Neurol ; 10: 56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778330

RESUMO

With respect to photoreceptor function, it is well known that electroretinogram (ERG) amplitudes decrease with age, but to our knowledge, studies describing age-related changes in the pupil light response (PLR) of mice are lacking. This study recorded the PLR and ERG in C57BL/6 and Sv129S6 wild-type mice at three different ages during early adulthood. Dark- and light-adapted PLR and ERG measurements were performed at 1, 2, and 4 months of age. For PLR measurements, we used either a red (622 nm) or blue (463 nm) light stimulus (500 ms) to stimulate one eye. We selected various light intensities ranging across almost 4 log units and subsequently classified them as low, medium, or high intensity. From the recorded PLR, we selected parameters to quantify the early and late phases of the response such as the baseline pupil size, the maximal constriction amplitude, the maximal velocity, the early partial dilation (area under the curve of the positive peak of the first derivative of PLR tracing), and the sustained constriction amplitude. For ERG measurements, both scotopic and photopic responses were recorded following stimulation with green light (520 nm) at preselected intensities. The amplitudes and latencies of the a-wave and the b-wave were also analyzed. In both strains, 1-month-old animals presented with a smaller baseline pupil diameter compared to that in 2- and 4-month-old mice. They also exhibited greater maximal constriction amplitude in response to red stimuli of medium intensity. Further, 1-month-old Sv129S6 mice responded with greater constriction amplitude to all other red and blue stimuli. One-month-old C57BL/6 mice also demonstrated faster early partial dilation and smaller sustained response to low blue stimuli. The ERG of 1-month-old C57BL/6 mice showed a greater scotopic a-wave amplitude compared to that of 2-month-old mice, whereas no significant differences were found in Sv129S6 mice. These results suggest that the functional maturation of the neuronal pathway that mediates the PLR continues after 1 month of age. In studies that measure PLR to determine retinal integrity in adult mice, it is thus important to determine normative values in animals of 2 months of age.

11.
Transl Res ; 188: 40-57.e4, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28754419

RESUMO

Several approaches have been developed for gene therapy in RPE65-related Leber congenital amaurosis. To date, strategies that have reached the clinical stages rely on adeno-associated viral vectors and two of them documented limited long-term effect. We have developed a lentiviral-based strategy of RPE65 gene transfer that efficiently restored protein expression and cone function in RPE65-deficient mice. In this study, we evaluated the ocular and systemic tolerances of this lentiviral-based therapy (LV-RPE65) on healthy nonhuman primates (NHPs), without adjuvant systemic anti-inflammatory prophylaxis. For the first time, we describe the early kinetics of retinal detachment at 2, 4, and 7 days after subretinal injection using multimodal imaging in 5 NHPs. We revealed prolonged reattachment times in LV-RPE65-injected eyes compared to vehicle-injected eyes. Low- (n = 2) and high-dose (n = 2) LV-RPE65-injected eyes presented a reduction of the outer nuclear and photoreceptor outer segment layer thickness in the macula, that was more pronounced than in vehicle-injected eyes (n = 4). All LV-RPE65-injected eyes showed an initial perivascular reaction that resolved spontaneously within 14 days. Despite foveal structural changes, full-field electroretinography indicated that the overall retinal function was preserved over time and immunohistochemistry identified no difference in glial, microglial, or leucocyte ocular activation between low-dose, high-dose, and vehicle-injected eyes. Moreover, LV-RPE65-injected animals did not show signs of vector shedding or extraocular targeting, confirming the safe ocular restriction of the vector. Our results evidence a limited ocular tolerance to LV-RPE65 after subretinal injection without adjuvant anti-inflammatory prophylaxis, with complications linked to this route of administration necessitating to block this transient inflammatory event.


Assuntos
Proteínas do Olho/administração & dosagem , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Lentivirus/genética , Receptores Acoplados a Proteínas G/administração & dosagem , Animais , Feminino , Macaca fascicularis , Retina
12.
Elife ; 62017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28548639

RESUMO

Besides its role in vision, light impacts physiology and behavior through circadian and direct (aka 'masking') mechanisms. In Smith-Magenis syndrome (SMS), the dysregulation of both sleep-wake behavior and melatonin production strongly suggests impaired non-visual light perception. We discovered that mice haploinsufficient for the SMS causal gene, Retinoic acid induced-1 (Rai1), were hypersensitive to light such that light eliminated alert and active-wake behaviors, while leaving time-spent-awake unaffected. Moreover, variables pertaining to circadian rhythm entrainment were activated more strongly by light. At the input level, the activation of rod/cone and suprachiasmatic nuclei (SCN) by light was paradoxically greatly reduced, while the downstream activation of the ventral-subparaventricular zone (vSPVZ) was increased. The vSPVZ integrates retinal and SCN input and, when activated, suppresses locomotor activity, consistent with the behavioral hypersensitivity to light we observed. Our results implicate Rai1 as a novel and central player in processing non-visual light information, from input to behavioral output.


Assuntos
Ritmo Circadiano/efeitos da radiação , Hipotálamo/fisiologia , Luz , Transativadores/metabolismo , Vigília/efeitos da radiação , Animais , Comportamento Animal , Camundongos
13.
Biol Open ; 5(11): 1585-1594, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27638769

RESUMO

The ADAMTS family comprises 19 secreted metalloproteinases that cleave extracellular matrix components and have diverse functions in numerous disease and physiological contexts. A number of them remain 'orphan' proteases and among them is ADAMTS18, which has been implicated in developmental eye disorders, platelet function and various malignancies. To assess in vivo function of ADAMTS18, we generated a mouse strain with inactivated Adamts18 alleles. In the C57Bl6/Ola background, Adamts18-deficient mice are born in a normal Mendelian ratio, and are viable but show a transient growth delay. Histological examination revealed a 100% penetrant eye defect resulting from leakage of lens material through the lens capsule occurring at embryonic day (E)13.5, when the lens grows rapidly. Adamts18-deficient lungs showed altered bronchiolar branching. Fifty percent of mutant females are infertile because of vaginal obstruction due to either a dorsoventral vaginal septum or imperforate vagina. The incidence of ovarian rete is increased in the mutant mouse strain. Thus, Adamts18 is essential in the development of distinct tissues and the new mouse strain is likely to be useful for investigating ADAMTS18 function in human disease, particularly in the contexts of infertility and carcinogenesis.

14.
Mol Brain ; 9(1): 64, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27267879

RESUMO

BACKGROUND: Amyloid precursor protein knockout mice (APP-KO) have impaired differentiation of amacrine and horizontal cells. APP is part of a gene family and its paralogue amyloid precursor-like protein 2 (APLP2) has both shared as well as distinct expression patterns to APP, including in the retina. Given the impact of APP in the retina we investigated how APLP2 expression affected the retina using APLP2 knockout mice (APLP2-KO). RESULTS: Using histology, morphometric analysis with noninvasive imaging technique and electron microscopy, we showed that APLP2-KO retina displayed abnormal formation of the outer synaptic layer, accompanied with greatly impaired photoreceptor ribbon synapses in adults. Moreover, APLP2-KO displayed a significant decease in ON-bipolar, rod bipolar and type 2 OFF-cone bipolar cells (36, 21 and 63 %, respectively). Reduction of the number of bipolar cells was accompanied with disrupted dendrites, reduced expression of metabotropic glutamate receptor 6 at the dendritic tips and alteration of axon terminals in the OFF laminae of the inner plexiform layer. In contrast, the APP-KO photoreceptor ribbon synapses and bipolar cells were intact. The APLP2-KO retina displayed numerous phenotypic similarities with the congenital stationary night blindness, a non-progressive retinal degeneration disease characterized by the loss of night vision. The pathological phenotypes in the APLP2-KO mouse correlated to altered transcription of genes involved in pre- and postsynatic structure/function, including CACNA1F, GRM6, TRMP1 and Gα0, and a normal scotopic a-wave electroretinogram amplitude, markedly reduced scotopic electroretinogram b-wave and modestly reduced photopic cone response. This confirmed the impaired function of the photoreceptor ribbon synapses and retinal bipolar cells, as is also observed in congenital stationary night blindness. Since congenital stationary night blindness present at birth, we extended our analysis to retinal differentiation and showed impaired differentiation of different bipolar cell subtypes and an altered temporal sequence of development from OFF to ON laminae in the inner plexiform layer. This was associated with the altered expression patterns of bipolar cell generation and differentiation factors, including MATH3, CHX10, VSX1 and OTX2. CONCLUSIONS: These findings demonstrate that APLP2 couples retina development and synaptic genes and present the first evidence that APLP2 expression may be linked to synaptic disease.


Assuntos
Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Oftalmopatias Hereditárias/genética , Deleção de Genes , Doenças Genéticas Ligadas ao Cromossomo X/genética , Miopia/genética , Cegueira Noturna/genética , Envelhecimento/patologia , Células Amácrinas/metabolismo , Precursor de Proteína beta-Amiloide/deficiência , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Proteínas do Sistema Complemento/metabolismo , Dendritos/metabolismo , Oftalmopatias Hereditárias/patologia , Oftalmopatias Hereditárias/fisiopatologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miopia/patologia , Miopia/fisiopatologia , Neurogênese , Cegueira Noturna/patologia , Cegueira Noturna/fisiopatologia , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/ultraestrutura , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Bipolares da Retina/metabolismo , Células Bipolares da Retina/patologia , Células Bipolares da Retina/ultraestrutura , Transmissão Sináptica , Fatores de Transcrição/metabolismo , Transcrição Gênica
15.
Invest Ophthalmol Vis Sci ; 57(6): 2501-8, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27152964

RESUMO

PURPOSE: This study aims to identify which aspects of the pupil light reflex are most influenced by rods and cones independently by analyzing pupil recordings from different mouse models of photoreceptor deficiency. METHODS: One-month-old wild type (WT), rodless (Rho-/-), coneless (Cnga3-/-), or photoreceptor less (Cnga3-/-; Rho-/- or Gnat1-/-) mice were subjected to brief red and blue light stimuli of increasing intensity. To describe the initial dynamic response to light, the maximal pupillary constriction amplitudes and the derivative curve of the first 3 seconds were determined. To estimate the postillumination phase, the constriction amplitude at 9.5 seconds after light termination was related to the maximal constriction amplitude. RESULTS: Rho-/- mice showed decreased constriction amplitude but more prolonged pupilloconstriction to all blue and red light stimuli compared to wild type mice. Cnga3-/- mice had constriction amplitudes similar to WT however following maximal constriction, the early and rapid dilation to low intensity blue light was decreased. To high intensity blue light, the Cnga3-/- mice demonstrated marked prolongation of the pupillary constriction. Cnga3-/-; Rho-/- mice had no pupil response to red light of low and medium intensity. CONCLUSIONS: From specific gene defective mouse models which selectively voided the rod or cone function, we determined that mouse rod photoreceptors are highly contributing to the pupil response to blue light stimuli but also to low and medium red stimuli. We also observed that cone cells mainly drive the partial rapid dilation of the initial response to low blue light stimuli. Thus photoreceptor dysfunction can be derived from chromatic pupillometry in mouse models.


Assuntos
Luz , Pupila/fisiologia , Reflexo Pupilar/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Animais , Camundongos , Modelos Animais , Estimulação Luminosa , Células Ganglionares da Retina/citologia , Opsinas de Bastonetes/metabolismo
16.
J Pathol ; 238(2): 300-10, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26387748

RESUMO

Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans.


Assuntos
Cegueira/genética , Modelos Animais de Doenças , Animais , Animais Geneticamente Modificados , Cegueira/terapia , Cães , Terapia Genética , Humanos , Mutação/genética , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Roedores , Saimiri , Ovinos , Suínos
17.
Mol Ther Methods Clin Dev ; 2: 14064, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052532

RESUMO

Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA) clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF) expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF). Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration.

18.
Pigment Cell Melanoma Res ; 27(4): 580-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24628886

RESUMO

The ciliary body and iris are pigmented epithelial structures in the anterior eye segment that function to maintain correct intra-ocular pressure and regulate exposure of the internal eye structures to light, respectively. The cellular and molecular factors that mediate the development of the ciliary body and iris from the ocular pigmented epithelium remain to be fully elucidated. Here, we have investigated the role of Notch signaling during the development of the anterior pigmented epithelium by using genetic loss- and gain-of-function approaches. Loss of canonical Notch signaling results in normal iris development but absence of the ciliary body. This causes progressive hypotony and over time leads to phthisis bulbi, a condition characterized by shrinkage of the eye and loss of structure/function. Conversely, Notch gain-of-function results in aniridia and profound ciliary body hyperplasia, which causes ocular hypertension and glaucoma-like disease. Collectively, these data indicate that Notch signaling promotes ciliary body development at the expense of iris formation and reveals novel animal models of human ocular pathologies.


Assuntos
Corpo Ciliar/embriologia , Proteínas do Olho/metabolismo , Iris/embriologia , Epitélio Pigmentado Ocular/embriologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Corpo Ciliar/citologia , Proteínas do Olho/genética , Humanos , Iris/citologia , Camundongos , Camundongos Transgênicos , Epitélio Pigmentado Ocular/citologia , Receptores Notch/genética
19.
PLoS One ; 8(8): e71363, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977029

RESUMO

Large animal models are an important resource for the understanding of human disease and for evaluating the applicability of new therapies to human patients. For many diseases, such as cone dystrophy, research effort is hampered by the lack of such models. Lentiviral transgenesis is a methodology broadly applicable to animals from many different species. When conjugated to the expression of a dominant mutant protein, this technology offers an attractive approach to generate new large animal models in a heterogeneous background. We adopted this strategy to mimic the phenotype diversity encounter in humans and generate a cohort of pigs for cone dystrophy by expressing a dominant mutant allele of the guanylate cyclase 2D (GUCY2D) gene. Sixty percent of the piglets were transgenic, with mutant GUCY2D mRNA detected in the retina of all animals tested. Functional impairment of vision was observed among the transgenic pigs at 3 months of age, with a follow-up at 1 year indicating a subsequent slower progression of phenotype. Abnormal retina morphology, notably among the cone photoreceptor cell population, was observed exclusively amongst the transgenic animals. Of particular note, these transgenic animals were characterized by a range in the severity of the phenotype, reflecting the human clinical situation. We demonstrate that a transgenic approach using lentiviral vectors offers a powerful tool for large animal model development. Not only is the efficiency of transgenesis higher than conventional transgenic methodology but this technique also produces a heterogeneous cohort of transgenic animals that mimics the genetic variation encountered in human patients.


Assuntos
Animais Geneticamente Modificados , Heterogeneidade Genética , Guanilato Ciclase/genética , Células Fotorreceptoras Retinianas Cones/patologia , Distrofias Retinianas/genética , Transgenes , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Eletrorretinografia , Genes Dominantes , Vetores Genéticos , Guanilato Ciclase/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Lentivirus/genética , Dados de Sequência Molecular , Mutação , Fenótipo , Células Fotorreceptoras Retinianas Cones/enzimologia , Distrofias Retinianas/patologia , Homologia de Sequência de Aminoácidos , Índice de Gravidade de Doença , Suínos/genética , Acuidade Visual
20.
J Gene Med ; 14(11): 632-41, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23080553

RESUMO

BACKGROUND: Strategies leading to the long-term suppression of inappropriate ocular angiogenesis are required to avoid the need for repetitive monthly injections for treatment of diseases of the eye, such as age-related macular degeneration (AMD). The present study aimed to develop a strategy for the sustained repression of vascular endothelial growth factor (VEGF), which is identified as the key player in exudative AMD. METHODS: We have employed short hairpin (sh)RNAs combined with adeno-associated virus (AAV) delivery to obtain the targeted expression of potent gene-regulatory molecules. Anti-VEGF shRNAs were analyzed in human retinal pigment epithelial (RPE) cells using Renilla luciferase screening. For in vivo delivery of the most potent shRNA, self-complementary AAV vectors were packaged in serotype 8 capsids (scAAV2/8-hU6-sh9). In vivo efficacy was evaluated either by injection of scAAV2/8-hU6-sh9 into murine hind limb muscles or in a laser-induced murine model of choroidal neovascularization (CNV) following scAAV2/8-hU6-sh9 subretinal delivery. RESULTS: Plasmids encoding anti-VEGF shRNAs showed efficient knockdown of human VEGF in RPEs. Intramuscular administration led to localized expression and 91% knockdown of endogenous murine (m)VEGF. Subsequently, the ability of AAV2/8-encoded shRNAs to impair vessel formation was evaluated in the murine model of CNV. In this model, the sizes of the CNV were significantly reduced (up to 48%) following scAAV2/8-hU6-sh9 subretinal delivery. CONCLUSIONS: Using anti-VEGF vectors, we have demonstrated efficient silencing of endogenous mVEGF and showed that subretinal administration of scAAV2/8-hU6-sh9 has the ability to impair vessel formation in an AMD animal model. Thus, AAV-encoded shRNA can be used for the inhibition of neovascularization, leading to the development of sustained anti-VEGF therapy.


Assuntos
Neovascularização de Coroide/genética , Dependovirus/genética , RNA Interferente Pequeno/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular , Neovascularização de Coroide/metabolismo , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA