Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39061856

RESUMO

Sesame seeds are abundant in sesamin, which exerts health-promoting effects such as extending the lifespan of adult Drosophila and suppressing oxidative stress by activating the Nrf2 transcription factor. Here, we investigated whether sesamin activated Nrf2 in larval tissues and induced the expression of Nrf2 target genes. In the sesamin-fed larvae, Nrf2 was activated in the central nervous system (CNS), gut, and salivary glands. The ectopic expression of Keap1 in glial cells inhibited sesamin-induced Nrf2 activation in the whole CNS more than in the neurons, indicating that sesamin activates Nrf2 in glia efficiently. We labeled the astrocytes as well as cortex and surface glia with fluorescence to identify the glial cell types in which Nrf2 was activated; we observed their activation in both cell types. These data suggest that sesamin may stimulate the expression of antioxidative genes in glial cells. Among the 17 candidate Nrf2 targets, the mRNA levels of Cyp6a2 and Cyp6g1 in cytochrome P450 were elevated in the CNS, gut, and salivary glands of the sesamin-fed larvae. However, this elevation did not lead to resistance against imidacloprid, which is detoxified by these enzymes. Our results suggest that sesamin may exert similar health-promoting effects on the human CNS and digestive tissues.

2.
iScience ; 27(2): 108853, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303707

RESUMO

Energy reserves, primarily stored in the insect's fat body, are essential for physiological processes such as reproduction and cocoon formation. However, whether these processes are mutually constraining is unknown. Here, we showed that cocoon-free silkworms accumulate amino acid constituents of silk proteins in the hemolymph and maintain lipid and sugar reserves in the pupal fat body by repressing the expression of sericin and fibroin genes in the middle and posterior silk glands, respectively, via butterfly pierisin-1A catalytic domain expression. This, in turn, upregulates insulin/insulin-like signaling and target of rapamycin (IIS/TOR) signaling, which enhances vitellogenesis and accelerates ovarian development, thus contributing to increased fecundity. The impacts of semi-starvation on fecundity and egg hatchability were also less pronounced in cocoon-free silkworms compared with wildtype silkworms. These data uncover the resource allocation trade-off between cocoon formation and fecundity and demonstrate that nutritional signaling plays a role in regulating silkworm reproduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA