RESUMO
Addressing serious waterborne arsenic issues, for the first time, lanthanum-doped MOF-808 (La@MOF-808) has been developed to remove total arsenic (Total As) and arsenite [As(III)] from water. This study involves the solvothermal synthesis of La@MOF-808, its characterization via FTIR, XRD, TGA, and SEM, in which distinct physicochemical attributes were identified, and the adsorption capacity of arsenic ions. The saturated adsorption capacity of La@MOF-808 for Total As and As(III) reached 282.9 mg g-1 and 283.5 mg g-1, as compared to 229.7 mg g-1 and 239.1 mg g-1 for pristine MOF-808, respectively. XRD and ATR-FTIR analyses underscored the central roles of electrostatic interactions and hydroxyl groups in the pollutant adsorption process. The impact of temperature, concentration, pH, and exposure duration times on adsorption performance was thoroughly investigated. The Langmuir model showed the maximum adsorption capacities (qmax) of La@MOF-808 was 307.7 mg g-1 for Total As and 325.7 mg g-1 for As(III), surpassing those of MOF-808 adsorbent, which suggests that monolayer adsorption occurred. Optimal adsorption was observed in a pH range of 2.0-7.0, and thermodynamic studies classified the process as spontaneous and endothermic. The adsorbent retains high capacity across repeated cycles, outperforming many standard adsorbents. Lanthanum doping markedly enhances MOF-808's arsenic removal, underscoring its potential for water treatment.
RESUMO
Single-walled carbon nanotubes (SWCNTs) coated or functionalized with PEG chains of different molecular weight were assessed for their propensity to undergo biodegradation under in vitro conditions using recombinant myeloperoxidase (MPO) or ex vivo using freshly isolated primary human neutrophils. Our findings suggest that under natural conditions, a combined process of 'stripping' (i.e., defunctionalization) and biodegradation of PEG-SWCNTs might occur and that PEG-SWCNTs are a promising--and degradable--nanomedicine vector.
Assuntos
Implantes de Medicamento/química , Nanocápsulas/química , Nanotubos de Carbono/química , Neutrófilos/enzimologia , Peroxidase/química , Polietilenoglicóis/química , Células Cultivadas , Materiais Revestidos Biocompatíveis/síntese química , Desenho de Fármacos , Humanos , Peso Molecular , Nanocápsulas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula , Especificidade por SubstratoRESUMO
Graphene represents an attractive two-dimensional carbon-based nanomaterial that holds great promise for applications such as electronics, batteries, sensors, and composite materials. Recent work has demonstrated that carbon-based nanomaterials are degradable/biodegradable, but little work has been expended to identify products formed during the degradation process. As these products may have toxicological implications that could leach into the environment or the human body, insight into the mechanism and structural elucidation remain important as carbon-based nanomaterials become commercialized. We provide insight into a potential mechanism of graphene oxide degradation via the photo-Fenton reaction. We have determined that after 1 day of treatment intermediate oxidation products (with MW 150-1000 Da) were generated. Upon longer reaction times (i.e., days 2 and 3), these products were no longer present in high abundance, and the system was dominated by graphene quantum dots (GQDs). On the basis of FTIR, MS, and NMR data, potential structures for these oxidation products, which consist of oxidized polycyclic aromatic hydrocarbons, are proposed.
RESUMO
Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials.
Assuntos
Armadilhas Extracelulares/imunologia , Imunidade Inata/imunologia , Nanotubos de Carbono/química , Ativação de Neutrófilo/imunologia , Neutrófilos/química , Neutrófilos/imunologia , Células Cultivadas , HumanosRESUMO
In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to "digest" carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* â peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung.
Assuntos
Pulmão/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Ácido Peroxinitroso/química , Superóxidos/química , Acústica , Animais , Materiais Biocompatíveis/química , Lavagem Broncoalveolar , Carbono/química , Humanos , Inflamação/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Óxido Nítrico/química , Oxigênio/química , RatosRESUMO
Carbon nanomaterials have been widely explored for diverse biosensing applications including bacterial detection. However, covalent functionalization of these materials can lead to the destruction of attractive electronic properties. To this end, we utilized a new graphene derivative, holey reduced graphene oxide (hRGO), functionalized with Magainin I to produce a broad-spectrum bacterial probe. Unlike related carbon nanomaterials, hRGO retains the necessary electronic properties while providing the high percentage of available oxygen moieties required for effective covalent functionalization.
Assuntos
Bactérias/química , Técnicas Biossensoriais/instrumentação , Eletrônica/instrumentação , Grafite/química , Óxidos/química , Bactérias/isolamento & purificação , Técnicas Biossensoriais/métodos , Eletrônica/métodos , Nanoestruturas/químicaRESUMO
As a result of their unique electronic, optical, and mechanical properties, carbon nanotubes (CNTs) have been implemented in therapeutic and imaging applications. In an idealized situation, CNTs would be disposed of after they transport their theranostic payloads. Biodegradation represents an attractive pathway for the elimination of CNT carriers post-delivery and may be integral in catalyzing the release of the cargo from the delivery vehicle. Accordingly, recent research efforts have focused on peroxidase-driven biodegradation of CNTs. In this review, we not only summarize recent efforts to biodegrade CNTs in the test tube, in vitro, and in vivo, but also attempt to explore the fundamental parameters underlying degradation. Encouraged by the in vivo results obtained to date, we envision a future, where carbon-based nano-containers, which are specifically designed to target organs/cells, deliver their cargo, and biodegrade via peroxidase-driven mechanism, will represent an attractive therapeutic delivery option in nanomedicine.
Assuntos
Sistemas de Liberação de Medicamentos , Nanotubos de Carbono/química , Peroxidases/metabolismo , Animais , Encéfalo/metabolismo , Diagnóstico por Imagem/métodos , Humanos , Pulmão/metabolismo , Nanomedicina/métodos , Neutrófilos/metabolismo , Estresse OxidativoRESUMO
In this work, we studied enzyme-catalyzed oxidation of single-walled carbon nanotubes (SWCNTs) produced by the high-pressure carbon monoxide (HiPco) method. While oxidation via strong acids introduced defect sites on SWCNTs and suppressed their near-infrared (NIR) fluorescence, our results indicated that the fluorescence of SWCNTs was restored upon enzymatic oxidation, providing new evidence that the reaction catalyzed by horseradish peroxidase (HRP) in the presence of H2O2 is mainly a defect-consuming step. These results were further supported by both UV-vis-NIR and Raman spectroscopy. Therefore, when acid oxidation followed by HRP-catalyzed enzyme oxidation was employed, shortened (<300 nm in length) and NIR-fluorescent SWCNTs were produced. In contrast, upon treatment with myeloperoxidase, H2O2, and NaCl, the oxidized HiPco SWCNTs underwent complete oxidation (i.e., degradation). The shortened, NIR-fluorescent SWCNTs resulting from HRP-catalyzed oxidation of acid-cut HiPco SWCNTs may find applications in cellular NIR imaging and drug delivery systems.
Assuntos
Fluorescência , Peroxidase do Rábano Silvestre/metabolismo , Nanotubos de Carbono/química , Biocatálise , Peroxidase do Rábano Silvestre/química , Modelos Moleculares , Oxirredução , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
The growing applications of carbon nanotubes (CNTs) inevitably increase the risk of exposure to this potentially toxic nanomaterial. In an attempt to address this issue, research has been implemented to study the biodegradation of CNTs. In particular, myeloperoxidase (MPO), an enzyme expressed by inflammatory cells of animals including humans, catalyse the degradation of oxidized carbon nanomaterials. While reactive intermediates generated by MPO efficiently degrade oxidized single-walled carbon nanotubes (o-SWCNTs); the exact mechanism of enzyme-catalysed biodegradation remains ambiguous. In this work, we tried to explain enzymatic oxidation in terms of redox potentials by employing competitive substrates for MPO such as chloride, which is oxidized by MPO to form a strong oxidant (hypochlorite), and antioxidants that have lower redox potentials than CNTs. Employing transmission electron microscopy, Raman spectroscopy, and vis-NIR absorption spectroscopy, we demonstrate that the addition of antioxidants, L-ascorbic acid and L-glutathione, with or without chloride significantly mitigates MPO-catalysed biodegradation of o-SWCNTs. This study focuses on a fundamental understanding of the mechanisms of enzymatic biodegradation of CNTs and the impact of antioxidants on these pathways.
RESUMO
Eosinophil peroxidase (EPO) is one of the major oxidant-producing enzymes during inflammatory states in the human lung. The degradation of single-walled carbon nanotubes (SWCNTs) upon incubation with human EPO and H2O2 is reported. Biodegradation of SWCNTs is higher in the presence of NaBr, but neither EPO alone nor H2O2 alone caused the degradation of nanotubes. Molecular modeling reveals two binding sites for SWCNTs on EPO, one located at the proximal side (same side as the catalytic site) and the other on the distal side of EPO. The oxidized groups on SWCNTs in both cases are stabilized by electrostatic interactions with positively charged residues. Biodegradation of SWCNTs can also be executed in an ex vivo culture system using primary murine eosinophils stimulated to undergo degranulation. Biodegradation is proven by a range of methods including transmission electron microscopy, UV-visible-NIR spectroscopy, Raman spectroscopy, and confocal Raman imaging. Thus, human EPO (in vitro) and ex vivo activated eosinophils mediate biodegradation of SWCNTs: an observation that is relevant to pulmonary responses to these materials.
Assuntos
Nanotubos de Carbono/química , Animais , Biodegradação Ambiental , Peroxidase de Eosinófilo/metabolismo , Eosinófilos/metabolismo , Humanos , CamundongosRESUMO
Graphene oxide (GO) and C60 - or C60 -TRIS fullerenes, internalized by murine dendritic cells (DCs), differently affect their abilities to present antigens to T-cells. While C60 -fullerenes stimulate the ovalbumin-specific MHC class I-restricted T-cell response, GO impairs the stimulatory potential of DCs. In contrast to C60 -fullerenes, GO decreases the intracellular levels of LMP7 immunoproteasome subunits required for processing of protein antigens. This is important for the development of DC-based vaccines.
Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Fulerenos/farmacologia , Grafite/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Animais , Células Dendríticas/imunologia , Grafite/química , Camundongos , Óxidos/farmacologiaRESUMO
Over the past three decades, revolutionary research in nanotechnology by the scientific, medical, and engineering communities has yielded a treasure trove of discoveries with diverse applications that promise to benefit humanity. With their unique electronic and mechanical properties, carbon nanomaterials (CNMs) represent a prime example of the promise of nanotechnology with applications in areas that include electronics, fuel cells, composites, and nanomedicine. Because of toxicological issues associated with CNMs, however, their full commercial potential may not be achieved. The ex vitro, in vitro, and in vivo data presented in this Account provide fundamental insights into the biopersistence of CNMs, such as carbon nanotubes and graphene, and their oxidation/biodegradation processes as catalyzed by peroxidase enzymes. We also communicate our current understanding of the mechanism for the enzymatic oxidation and biodegradation. Finally, we outline potential future directions that could enhance our mechanistic understanding of the CNM oxidation and biodegradation and could yield benefits in terms of human health and environmental safety. The conclusions presented in this Account may catalyze a rational rethinking of CNM incorporation in diverse applications. For example, armed with an understanding of how and why CNMs undergo enzyme-catalyzed oxidation and biodegradation, researchers can tailor the structure of CNMs to either promote or inhibit these processes. In nanomedical applications such as drug delivery, the incorporation of carboxylate functional groups could facilitate biodegradation of the nanomaterial after delivery of the cargo. On the other hand, in the construction of aircraft, a CNM composite should be stable to oxidizing conditions in the environment. Therefore, pristine, inert CNMs would be ideal for this application. Finally, the incorporation of CNMs with defect sites in consumer goods could provide a facile mechanism that promotes the degradation of these materials once these products reach landfills.
Assuntos
Carbono/química , Nanoestruturas/química , Peroxidase/metabolismo , Biocatálise , Biodegradação Ambiental , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Peróxido de Hidrogênio/química , Nanotubos de Carbono/química , Oxirredução , Peroxidase/químicaRESUMO
Advancement of biomedical applications of carbonaceous nanomaterials is hampered by their biopersistence and pro-inflammatory action in vivo. Here, we used myeloperoxidase knockout B6.129X1-MPO (MPO k/o) mice and showed that oxidation and clearance of single walled carbon nanotubes (SWCNT) from the lungs of these animals after pharyngeal aspiration was markedly less effective whereas the inflammatory response was more robust than in wild-type C57Bl/6 mice. Our results provide direct evidence for the participation of MPO - one of the key-orchestrators of inflammatory response - in the in vivo pulmonary oxidative biodegradation of SWCNT and suggest new ways to control the biopersistence of nanomaterials through genetic or pharmacological manipulations.
Assuntos
Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Peroxidase/deficiência , Animais , Líquido da Lavagem Broncoalveolar/citologia , Quimiocina CCL2/metabolismo , Feminino , Fibrose/induzido quimicamente , Fibrose/metabolismo , Interleucina-6/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanotubos de Carbono/ultraestrutura , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Oxirredução , Peroxidase/genética , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Análise Espectral Raman , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The pulmonary route represents one of the most important portals of entry for nanoparticles into the body. However, the in vivo interactions of nanoparticles with biomolecules of the lung have not been sufficiently studied. Here, using an established mouse model of pharyngeal aspiration of single-walled carbon nanotubes (SWCNTs), we recovered SWCNTs from the bronchoalveolar lavage fluid (BALf), purified them from possible contamination with lung cells, and examined the composition of phospholipids adsorbed on SWCNTs by liquid chromatography mass spectrometry (LC-MS) analysis. We found that SWCNTs selectively adsorbed two types of the most abundant surfactant phospholipids: phosphatidylcholines (PC) and phosphatidylglycerols (PG). Molecular speciation of these phospholipids was also consistent with pulmonary surfactant. Quantitation of adsorbed lipids by LC-MS along with the structural assessments of phospholipid binding by atomic force microscopy and molecular modeling indicated that the phospholipids (â¼108 molecules per SWCNT) formed an uninterrupted "coating" whereby the hydrophobic alkyl chains of the phospholipids were adsorbed onto the SWCNT with the polar head groups pointed away from the SWCNT into the aqueous phase. In addition, the presence of surfactant proteins A, B, and D on SWCNTs was determined by LC-MS. Finally, we demonstrated that the presence of this surfactant coating markedly enhanced the in vitro uptake of SWCNTs by macrophages. Taken together, this is the first demonstration of the in vivo adsorption of the surfactant lipids and proteins on SWCNTs in a physiologically relevant animal model.
Assuntos
Lipídeos/química , Pulmão/metabolismo , Nanotubos de Carbono , Faringe/metabolismo , Tensoativos/química , Adsorção , Animais , Camundongos , Aspiração RespiratóriaRESUMO
Controlled self-assembly of zero-dimensional gold nanoparticles and construction of complex gold nanostructures from these building blocks could significantly extend their applications in many fields. Carbon nanotubes are one of the most promising inorganic templates for this strategy because of their unique physical, chemical, and mechanical properties, which translate into numerous potential applications. Here we report the bottom-up synthesis of gold nanowires in aqueous solution through self-assembly of gold nanoparticles on single-walled carbon nanotubes followed by thermal-heating-induced nanowelding. We investigate the mechanism of this process by exploring different graphitic templates. The experimental work is assisted by computational studies that provide additional insight into the self-assembly and nanowelding mechanism. We also demonstrate the chemical sensitivity of the nanomaterial to parts-per-billion concentrations of hydrogen sulfide with potential applications in industrial safety and personal healthcare.
RESUMO
Here we investigated the interactions between lectins and carbohydrates using field-effect transistor (FET) devices comprised of chemically converted graphene (CCG) and single-walled carbon nanotubes (SWNTs). Pyrene- and porphyrin-based glycoconjugates were functionalized noncovalently on the surface of CCG-FET and SWNT-FET devices, which were then treated with 2 µM nonspecific and specific lectins. In particular, three different lectins (PA-IL, PA-IIL, and ConA) and three carbohydrate epitopes (galactose, fucose, and mannose) were tested. The responses of 36 different devices were compared and rationalized using computer-aided models of carbon nanostructure/glycoconjugate interactions. Glycoconjugate surface coverage in addition to one-dimensional structures of SWNTs resulted in optimal lectin detection. Additionally, lectin titration data of SWNT- and CCG-based biosensors were used to calculate lectin dissociation constants (K(d)) and compare them to the values obtained from the isothermal titration microcalorimetry technique.
Assuntos
Técnicas Biossensoriais/instrumentação , Carboidratos/química , Condutometria/instrumentação , Grafite/química , Lectinas/análise , Nanotubos de Carbono/química , Desenho de Equipamento , Análise de Falha de Equipamento , Lectinas/química , Nanotubos de Carbono/ultraestruturaRESUMO
Graphene is a novel two-dimensional nanomaterial that holds great potential in electronic and sensor applications. By etching the edges to form nanoribbons or introducing defects on the basal plane, it has been demonstrated that the physical and chemical properties of graphene can be drastically altered. However, the lithographic or chemical techniques required to reliably produce such nanoribbons remain challenging. Here, we report the fabrication of nanosensors based on holey reduced graphene oxide (hRGO), which can be visualized as interconnected graphene nanoribbons. In our method, enzymatic oxidation generated holes within the basal plane of graphene oxide, and after reduction with hydrazine, hRGO was formed. When decorated with Pt nanoparticles, hRGO exhibited a large and selective electronic response toward hydrogen gas. By combining experimental results and theoretical modeling, we propose that the increased edge-to-plane ratio, oxygen moieties, and Pt nanoparticle decoration were responsible for the observed gas sensing with hRGO nanostructures.
Assuntos
Grafite/química , Nanopartículas Metálicas/química , Platina/química , Hidrogênio/química , Óxidos/química , Propriedades de SuperfícieRESUMO
Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon--the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (â¼40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, ultraviolet-visible, electron paramagnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gas chromatography-mass spectrometry. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Owing to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors.
Assuntos
Grafite/química , Peroxidase do Rábano Silvestre/química , Peróxido de Hidrogênio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Teste de Materiais , Oxirredução , Óxidos/químicaRESUMO
Single-walled carbon nanotubes (SWNTs) have been investigated for a variety of applications including composite materials, electronics, and drug delivery. However, these applications may be compromised depending on the negative effects of SWNTs to living systems. While reports of toxicity induced by SWNTs vary, means to alleviate or quell these effects are in small abundance. We have reported recently the degradation of carboxylated SWNTs through enzymatic catalysis with horseradish peroxidase (HRP). In this full Article, we investigated the degradation of both carboxylated and pristine SWNTs with HRP and compared these results with chemical degradation by hemin and FeCl(3). The interaction between pristine and carboxylated SWNTs with HRP was further studied by computer modeling, and the products of the enzymatic degradation were identified. By examining these factors with both pristine and carboxylated SWNTs through a variety of techniques including atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), and liquid chromatography-mass spectrometry (LC-MS), degradation pathways were elucidated. It was observed that pristine SWNTs demonstrate no degradation with HRP incubation but display significant degradation when incubated with either hemin or FeCl(3). Such data signify a heterolytic cleavage of H(2)O(2) with HRP as pristine nanotubes do not degrade, whereas Fenton catalysis results in the homolytic cleavage of H(2)O(2) producing free radicals that oxidize pristine SWNTs. Product analysis shows complete degradation produces CO(2) gas. Conversely, incomplete degradation results in the formation of different oxidized aromatic hydrocarbons.