Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Commun ; 6(2): fcae121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665964

RESUMO

While animal models of Alzheimer's disease (AD) have shown altered gamma oscillations (∼40 Hz) in local neural circuits, the low signal-to-noise ratio of gamma in the resting human brain precludes its quantification via conventional spectral estimates. Phase-amplitude coupling (PAC) indicating the dynamic integration between the gamma amplitude and the phase of low-frequency (4-12 Hz) oscillations is a useful alternative to capture local gamma activity. In addition, PAC is also an index of neuronal excitability as the phase of low-frequency oscillations that modulate gamma amplitude, effectively regulates the excitability of local neuronal firing. In this study, we sought to examine the local neuronal activity and excitability using gamma PAC, within brain regions vulnerable to early AD pathophysiology-entorhinal cortex and parahippocampus, in a clinical population of patients with AD and age-matched controls. Our clinical cohorts consisted of a well-characterized cohort of AD patients (n = 50; age, 60 ± 8 years) with positive AD biomarkers, and age-matched, cognitively unimpaired controls (n = 35; age, 63 ± 5.8 years). We identified the presence or the absence of epileptiform activity in AD patients (AD patients with epileptiform activity, AD-EPI+, n = 20; AD patients without epileptiform activity, AD-EPI-, n = 30) using long-term electroencephalography (LTM-EEG) and 1-hour long magnetoencephalography (MEG) with simultaneous EEG. Using the source reconstructed MEG data, we computed gamma PAC as the coupling between amplitude of the gamma frequency (30-40 Hz) with phase of the theta (4-8 Hz) and alpha (8-12 Hz) frequency oscillations, within entorhinal and parahippocampal cortices. We found that patients with AD have reduced gamma PAC in the left parahippocampal cortex, compared to age-matched controls. Furthermore, AD-EPI+ patients showed greater reductions in gamma PAC than AD-EPI- in bilateral parahippocampal cortices. In contrast, entorhinal cortices did not show gamma PAC abnormalities in patients with AD. Our findings demonstrate the spatial patterns of altered gamma oscillations indicating possible region-specific manifestations of network hyperexcitability within medial temporal lobe regions vulnerable to AD pathophysiology. Greater deficits in AD-EPI+ suggests that reduced gamma PAC is a sensitive index of network hyperexcitability in AD patients. Collectively, the current results emphasize the importance of investigating the role of neural circuit hyperexcitability in early AD pathophysiology and explore its potential as a modifiable contributor to AD pathobiology.

2.
Sensors (Basel) ; 23(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687856

RESUMO

With the increasing prevalence of digital multimedia content, the need for reliable and accurate source camera identification has become crucial in applications such as digital forensics. While effective techniques exist for identifying the source camera of images, video-based source identification presents unique challenges due to disruptive effects introduced during video processing, such as compression artifacts and pixel misalignment caused by techniques like video coding and stabilization. These effects render existing approaches, which rely on high-frequency camera fingerprints like Photo Response Non-Uniformity (PRNU), inadequate for video-based identification. To address this challenge, we propose a novel approach that builds upon the image-based source identification technique. Leveraging a global stochastic fingerprint residing in the low- and mid-frequency bands, we exploit its resilience to disruptive effects in the high-frequency bands, envisioning its potential for video-based source identification. Through comprehensive evaluation on recent smartphones dataset, we establish new benchmarks for source camera model and individual device identification, surpassing state-of-the-art techniques. While conventional image-based methods struggle in video contexts, our approach unifies image and video source identification through a single framework powered by the novel non-PRNU device-specific fingerprint. This contribution expands the existing body of knowledge in the field of multimedia forensics.

3.
Sensors (Basel) ; 22(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36298222

RESUMO

Source-camera identification tools assist image forensics investigators to associate an image with a camera. The Photo Response Non-Uniformity (PRNU) noise pattern caused by sensor imperfections has been proven to be an effective way to identify the source camera. However, the PRNU is susceptible to camera settings, scene details, image processing operations (e.g., simple low-pass filtering or JPEG compression), and counter-forensic attacks. A forensic investigator unaware of malicious counter-forensic attacks or incidental image manipulation is at risk of being misled. The spatial synchronization requirement during the matching of two PRNUs also represents a major limitation of the PRNU. To address the PRNU's fragility issue, in recent years, deep learning-based data-driven approaches have been developed to identify source-camera models. However, the source information learned by existing deep learning models is not able to distinguish individual cameras of the same model. In light of the vulnerabilities of the PRNU fingerprint and data-driven techniques, in this paper, we bring to light the existence of a new robust data-driven device-specific fingerprint in digital images that is capable of identifying individual cameras of the same model in practical forensic scenarios. We discover that the new device fingerprint is location-independent, stochastic, and globally available, which resolves the spatial synchronization issue. Unlike the PRNU, which resides in the high-frequency band, the new device fingerprint is extracted from the low- and mid-frequency bands, which resolves the fragility issue that the PRNU is unable to contend with. Our experiments on various datasets also demonstrate that the new fingerprint is highly resilient to image manipulations such as rotation, gamma correction, and aggressive JPEG compression.


Assuntos
Algoritmos , Compressão de Dados , Compressão de Dados/métodos , Processamento de Imagem Assistida por Computador/métodos , Medicina Legal
4.
Sci Rep ; 11(1): 23084, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845252

RESUMO

Dynamic traffic of multicast communication in the Software Defined Network environment focused less though it is more natural and practical. In multicast communication, the traffic is dynamic due to the dynamic group memberships (i.e., participants join and leave the group anytime), which are not explored much in the previous research works. The multicast in dynamic traffic requires a method to handle dynamic group membership and minimum tree alteration for every join and leave of participants from the multicast group. This paper proposes a multicast tree construction algorithm, which considers receiving devices and network capability as base parameters to construct the multicast path. The proposed routing method uses Dijkstra's Shortest Path algorithm for initial tree formation, identifies a multicast path, and processes the Shortest Path Tree to reduce the overall hop count and path cost. The multicast tree generated by the proposed enables the dynamic join and leaves of participating devices with reduced tree alteration using more common paths to reach the devices. The implementation and results show that the proposed method works efficiently in resource utilization with a reduced hop count and quality for multicast communication in static and dynamic scenarios. Also, the results demonstrate that the proposed method generates a stable common path for multicast communication.

5.
J Cogn Neurosci ; 32(11): 2071-2086, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32459130

RESUMO

The chronology of events in time-space is naturally available to the senses, and the spatial and temporal dimensions of events entangle in episodic memory when navigating the real world. The mapping of time-space during navigation in both animals and humans implicates the hippocampal formation. Yet, one arguably unique human trait is the capacity to imagine mental chronologies that have not been experienced but may involve real events-the foundation of causal reasoning. Herein, we asked whether the hippocampal formation is involved in mental navigation in time (and space), which requires internal manipulations of events in time and space from an egocentric perspective. To address this question, we reanalyzed a magnetoencephalography data set collected while participants self-projected in time or in space and ordered historical events as occurring before/after or west/east of the mental self [Gauthier, B., Pestke, K., & van Wassenhove, V. Building the arrow of time… Over time: A sequence of brain activity mapping imagined events in time and space. Cerebral Cortex, 29, 4398-4414, 2019]. Because of the limitations of source reconstruction algorithms in the previous study, the implication of hippocampus proper could not be explored. Here, we used a source reconstruction method accounting explicitly for the hippocampal volume to characterize the involvement of deep structures belonging to the hippocampal formation (bilateral hippocampi [hippocampi proper], entorhinal cortices, and parahippocampal cortex). We found selective involvement of the medial temporal lobes (MTLs) with a notable lateralization of the main effects: Whereas temporal ordinality engaged mostly the left MTL, spatial ordinality engaged mostly the right MTL. We discuss the possibility of a top-down control of activity in the human hippocampal formation during mental time (and space) travels.


Assuntos
Encéfalo , Hipocampo , Animais , Mapeamento Encefálico , Córtex Entorrinal , Humanos , Lobo Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA