Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515311

RESUMO

Porous titanium scaffolds fabricated by powder bed fusion additive manufacturing techniques have been widely adopted for orthopedic and bone tissue engineering applications. Despite the many advantages of this approach, topological defects inherited from the fabrication process are well understood to negatively affect mechanical properties and pose a high risk if dislodged after implantation. Consequently, there is a need for further post-process surface cleaning. Traditional techniques such as grinding or polishing are not suited to lattice structures, due to lack of a line of sight to internal features. Chemical etching is a promising alternative; however, it remains unclear if changes to surface properties associated with such protocols will influence how cells respond to the material surface. In this study, we explored the response of bone marrow derived mesenchymal stem/stromal cells (MSCs) to Ti-6Al-4V whose surface was exposed to different durations of chemical etching. Cell morphology was influenced by local topological features inherited from the SLM fabrication process. On the as-built surface, topological nonhomogeneities such as partially adhered powder drove a stretched anisotropic cellular morphology, with large areas of the cell suspended across the nonhomogeneous powder interface. As the etching process was continued, surface defects were gradually removed, and cell morphology appeared more isotropic and was suggestive of MSC differentiation along an osteoblastic-lineage. This was accompanied by more extensive mineralization, indicative of progression along an osteogenic pathway. These findings point to the benefit of post-process chemical etching of additively manufactured Ti-6Al-4V biomaterials targeting orthopedic applications.

2.
Biomater Adv ; 153: 213532, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37390561

RESUMO

Cell seeding via cell-laden hydrogels offers a rapid way of depositing cells onto a substrate or scaffold. When appropriately formulated, hydrogels provide a dense network of fibres for cellular encapsulation and attachment, creating a protective environment that prevents cells to be washed away by media. However, when incorporating hydrogels into a cell seeding strategy the cellular capacity for migration from a hydrogel network and subsequent biofunctionality must be assessed. Here, we compare cell seeding via a bioprinted hydrogel with conventional manual cell seeding in media. To this end, we use a binder jet 3D printed bioceramic scaffold as a model system for bone tissue engineering and the reactive jet impingement (ReJI) bioprinting system to deliver high cell density cell-laden hydrogels onto the surface of the scaffolds. The bioceramic scaffolds were produced in apatite-wollastonite (AW) glass-ceramic, with a total porosity of ~50 %, with pore size predominantly around 50-200 µm. Bone marrow-derived mesenchymal stromal cells were seeded onto the porous AW substrate both in media and via ReJI bioprinting. Cell seeding in media confirmed the osteoinductive nature and the ability of the scaffold to support cell migration within the porous structure. Cell seeding via ReJI bioprinting demonstrated that the cell-laden hydrogel penetrated the porous AW structure upon hydrogel deposition. Furthermore, cells would then migrate out from the hydrogel network and interact with the bioceramic substrate. Overall, levels of cell migration and mineralisation were significant and comparable for both seeding approaches. However, cell seeding via bioprinted hydrogels may serve as an effective strategy for in situ cell seeding into implants, which is desired in clinical tissue engineering procedures, avoiding the time taken for cell attachment from media, and the requirement to maintain a specific orientation until attachment has occurred.


Assuntos
Hidrogéis , Engenharia Tecidual , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Porosidade , Movimento Celular
3.
Macromol Biosci ; 22(6): e2200071, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35365963

RESUMO

The surface of metal implants serves as a powerful signaling cue for cells. Its properties play an essential role in stabilizing the bone-implant interface and facilitating the early osseointegration by encouraging bone deposition on the surface. However, effective strategies to deliver cells to the metal surfaces are yet to be explored. Here, a bioprinting process, called reactive jet impingement (ReJI), is used to deposit high concentrations (4 × 107  cells mL-1 ) of mesenchymal stromal cells (MSCs) within hydrogel matrices directly onto the titanium alloy surfaces that vary in surface roughness and morphology. In this proof-of-concept study, cell-hydrogel-metal systems are fabricated with the aim of enhancing bioactivity through delivering MSCs in hydrogels at the bone-implant interface. These results show that the high cell concentrations encourage quick cell-biomaterial interactions at the hydrogel-metal surface interface, and cell morphology is influenced by the surface type. Cells migrate from the hydrogels and deposit mineralized matrix rich in calcium and phosphorus on the titanium alloy surfaces. The authors demonstrate that ReJI bioprinting is a promising tool to deliver cells in a 3D environment before implantation that can be used when developing a new generation of medical devices for bone tissue engineering.


Assuntos
Bioimpressão , Ligas , Bioimpressão/métodos , Hidrogéis/farmacologia , Osseointegração , Titânio/farmacologia
4.
Acta Bioeng Biomech ; 20(2): 35-45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30220727

RESUMO

their surface properties. A main challenge in this area is the development of processing routes enabling for a simple but efficient surface design of complex shaped geometries. Against this background, this work aimed at the implementation of self-assembly principles for surface functionalization of 3D-printed poly(lactic-co-glycolic acid) (PLGA)-based constructs with macro- and microporous geometries via precision extruding deposition. METHODS: Three-component melts from PLGA, CaCO3 and amphiphilic polymers (poly(2-oxazoline) block copolymer) were printed and their bulk and surface properties were studied. RESULTS: Melts with up to 30 mass % of CaCO3 could be successfully printed with homogeneously distributed mineral particles. PLGA degradation during the printing process was temperature and time dependent: the molecular weight reached 10 to 15% of the initial values after ca. 120 min of heat exposure. Filament surfaces from melts containing CaCO3 show an increasing microroughness along with increasing CaCO3 content. Surface roughness and amphiphilic polymer content improve scaffold wettability with both factors showing synergistic effects. The CaCO3 content of the melts affected the inner filament structure during in vitro degradation in PBS, resulting in a homogeneous mineral particle-associated microporosity for mineral contents of 20 mass % and above. CONCLUSIONS: These results provide novel insights into the behavior of three-component melts from PLGA, CaCO3 and amphiphilic polymers during precision extruding deposition and show for the first time that self-assembly processes can be used to tailor scaffolds surface properties under such processing conditions.


Assuntos
Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Soluções Tampão , Peso Molecular , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Água/química , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA