RESUMO
Hybrid organic-inorganic perovskites have been investigated for their potential to serve in next-generation perovskite solar cells (PSCs). While PSC technology is approaching commercialization, thermal and moisture stabilities remain a concern. Here, we describe the assembly of PSCs using an imidazoanthraquinone derivative (AQ) as a small organic additive to enhance the device performance and stability. Unlike polymer additives, AQ is easy to synthesize and is more economical. AQ was synthesized because it has both carbonyl and imidazole functional groups. The presence of C=O and N-H groups results in coordination interaction with Pb2+ and I- of the perovskite. Addition of the AQ molecule to methylammonium lead iodide leads to the formation of a superior crystalline perovskite film with fewer defects and enhanced stability under humid conditions. The use of optimized perovskite films enhanced device power conversion efficiency (PCE = 17.21%) compared to pristine perovskite (PCE = 13.88%). Unencapsulated optimized devices retained 90% of the initial power conversion efficiency for 30 days at a relative humidity of nearly 35%. The optimized films also exhibited superior thermal stability to that of pristine perovskite films.
RESUMO
A linear-shaped small organic molecule (E)-4-(5-(3,5-dimethoxy-styryl)thiophen-2-yl)-7-(5â³-hexyl-[2,2':5',2â³-terthiophen]-5-yl)benzo[c][1,2,5]thiadiazole (MBTR) comprising a benzothiadiazole (BTD) acceptor linked with the terminal donors bithiophene and dimethoxy vinylbenzene through a π-bridge thiophene was synthesized and analyzed. The MBTR efficiently tuned the thermal, absorption, and emission characteristics to enhance the molecular packing and aggregation behaviors in the solid state. The obtained optical bandgap of 1.86 eV and low-lying highest occupied molecular orbital (HOMO) level of -5.42 eV efficiently lowered the energy losses in the fabricated devices, thereby achieving enhanced photovoltaic performances. The optimized MBTR:PC71BM (1:2.5 w/w%) fullerene-based devices showed a maximum power conversion efficiency (PCE) of 7.05%, with an open-circuit voltage (VOC) of 0.943 V, short-circuit current density (JSC) of 12.63 mA/cm2, and fill factor (FF) of 59.2%. With the addition of 3% 1,8-diiodooctane (DIO), the PCE improved to 8.76% with a high VOC of 1.02 V, JSC of 13.78 mA/cm2, and FF of 62.3%, which are associated with improved charge transport at the donor/acceptor interfaces owing to the fibrous active layer morphology and favorable phase separation. These results demonstrate that the introduction of suitable donor/acceptor groups in molecular design and device engineering is an effective approach to enhancing the photovoltaic performances of organic solar cells.