Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Radiother Oncol ; 161: 16-22, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33992628

RESUMO

PURPOSE: This study aimed to assess the smallest clinical target volume (CTV) to planned target volume (PTV) margins for esophageal cancer radiotherapy using daily online registration to the bony anatomy that yield full dosimetric coverage over the course of treatment. METHODS: 29 esophageal cancer patients underwent six T2-weighted MRI scans at weekly intervals. An online bone-match image-guided radiotherapy treatment of five fractions was simulated for each patient. Multiple conformal treatment plans with increasing margins around the CTV were created for each patient. Then, the dose was warped to obtain an accumulated dose per simulated fraction. Full target coverage by 95% of the prescribed dose was assessed as a function of margin expansion in six directions. If target coverage in a single direction was accomplished, then the respective margin remained fixed for the subsequent dose plans. Margins in uncovered directions were increased in a new dose plan until full target coverage was achieved. RESULTS: The smallest set of CTV-to-PTV margins that yielded full dosimetric CTV coverage was 8 mm in posterior and right direction, 9 mm in anterior and cranial direction and 10 mm in left and caudal direction for 27 out of 29 patients. In two patients the curvature of the esophagus considerably changed between fractions, which required a 17 and 23 mm margin in right direction. CONCLUSION: Accumulated dose analysis revealed that CTV-to-PTV treatment margins of 8, 9 and 10 mm in posterior & right, anterior & cranial and left & caudal direction, respectively, are sufficient to account for interfraction tumor variations over the course of treatment when applying a daily online bone match. However, two patients with extreme esophageal interfraction motion were insufficiently covered with these margins and were identified as patients requiring replanning to achieve full target coverage.


Assuntos
Neoplasias Esofágicas , Neoplasias da Próstata , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Neoplasias Esofágicas/radioterapia , Humanos , Masculino , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
Clin Transl Radiat Oncol ; 14: 33-39, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30519647

RESUMO

BACKGROUND AND PURPOSE: Accurate delineation of the primary tumour is vital to the success of radiotherapy and even more important for successful boost strategies, aiming for improved local control in oesophageal cancer patients. Therefore, the aim was to assess delineation variability of the gross tumour volume (GTV) between CT and combined PET-CT in oesophageal cancer patients in a multi-institutional study. MATERIALS AND METHODS: Twenty observers from 14 institutes delineated the primary tumour of 6 cases on CT and PET-CT fusion. The delineated volumes, generalized conformity index (CIgen) and standard deviation (SD) in position of the most cranial/caudal slice over the observers were evaluated. For the central delineated region, perpendicular distance between median surface GTV and each individual GTV was evaluated as in-slice SD. RESULTS: After addition of PET, mean GTVs were significantly smaller in 3 cases and larger in 1 case. No difference in CIgen was observed (average 0.67 on CT, 0.69 on PET-CT). On CT cranial-caudal delineation variation ranged between 0.2 and 1.5 cm SD versus 0.2 and 1.3 cm SD on PET-CT. After addition of PET, the cranial and caudal variation was significantly reduced in 1 and 2 cases, respectively. The in-slice SD was on average 0.16 cm in both phases. CONCLUSION: In some cases considerable GTV delineation variability was observed at the cranial-caudal border. PET significantly influenced the delineated volume in four out of six cases, however its impact on observer variation was limited.

3.
Radiother Oncol ; 126(3): 534-540, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28919003

RESUMO

BACKGROUND AND PURPOSE: The use of Stereotactic Body Radiotherapy (SBRT) for bone metastases is increasing rapidly. Therefore, knowledge of the inter-observer differences in tumor volume delineation is essential to guarantee precise dose delivery. The aim of this study is to compare inter-observer agreement in bone metastases delineated on different imaging modalities. MATERIAL AND METHODS: Twenty consecutive patients with bone metastases treated with SBRT were selected. All patients received CT and MR imaging in treatment position prior to SBRT. Five observers from three institutions independently delineated gross tumor volume (GTV) on CT alone, CT with co-registered MRI and MRI alone. Four contours per imaging modality per patient were available, as one set of contours was shared by 2 observers. Inter-observer agreement, expressed in generalized conformity index [CIgen], volumes of contours and contours center of mass (COM) were calculated per patient and imaging modality. RESULTS: Mean GTV delineated on MR (45.9±52.0cm3) was significantly larger compared to CT-MR (40.2±49.4cm3) and CT (34.8±41.8cm3). A considerable variation in CIgen was found on CT (mean 0.46, range 0.15-0.75) and CT-MRI (mean 0.54, range 0.17-0.71). The highest agreement was found on MRI (mean 0.56, range 0.20-0.77). The largest variations of COM were found in anterior-posterior direction for all imaging modalities. CONCLUSIONS: Large inter-observer variation in GTV delineation exists for CT, CT-MRI and MRI. MRI-based GTV delineation resulted in larger volumes and highest consistency between observers.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Neoplasias Ósseas/patologia , Estudos de Coortes , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Variações Dependentes do Observador , Estudos Prospectivos , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/normas , Carga Tumoral
4.
Phys Med Biol ; 62(23): L41-L50, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29135471

RESUMO

The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.


Assuntos
Neoplasias Ósseas/radioterapia , Região Lombossacral/efeitos da radiação , Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Neoplasias da Coluna Vertebral/radioterapia , Idoso , Neoplasias Ósseas/secundário , Humanos , Pessoa de Meia-Idade , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Neoplasias da Coluna Vertebral/patologia
5.
Int J Hyperthermia ; 33(6): 593-607, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28540779

RESUMO

BACKGROUND: Hyperthermia treatment planning using dedicated simulations of power and temperature distributions is very useful to assist in hyperthermia applications. This paper describes an advanced treatment planning software package for a wide variety of applications. METHODS: The in-house developed C++ software package Plan2Heat runs on a Linux operating system. Modules are available to perform electric field and temperature calculations for many heating techniques. The package also contains optimisation routines, post-treatment evaluation tools and a sophisticated thermal model enabling to account for 3D vasculature based on an angiogram or generated artificially using a vessel generation algorithm. The use of the software is illustrated by a simulation of a locoregional hyperthermia treatment for a pancreatic cancer patient and a spherical tumour model heated by interstitial hyperthermia, with detailed 3D vasculature included. RESULTS: The module-based set-up makes the software flexible and easy to use. The first example demonstrates that treatment planning can help to focus the heating to the tumour. After optimisation, the simulated absorbed power in the tumour increased with 50%. The second example demonstrates the impact of accurately modelling discrete vasculature. Blood at body core temperature entering the heated volume causes relatively cold tracks in the heated volume, where the temperature remains below 40 °C. CONCLUSIONS: A flexible software package for hyperthermia treatment planning has been developed, which can be very useful in many hyperthermia applications. The object-oriented structure of the source code allows relatively easy extension of the software package with additional tools when necessary for future applications.


Assuntos
Hipertermia Induzida , Neoplasias/terapia , Planejamento de Assistência ao Paciente , Software , Terapia Assistida por Computador , Humanos , Modelos Teóricos
6.
Phys Med Biol ; 59(15): 4033-45, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24990772

RESUMO

A serious challenge in image registration is the accurate alignment of two images in which a certain structure is present in only one of the two. Such topological changes are problematic for conventional non-rigid registration algorithms. We propose to incorporate in a conventional free-form registration framework a geometrical penalty term that minimizes the volume of the missing structure in one image. We demonstrate our method on cervical MR images for brachytherapy. The intrapatient registration problem involves one image in which a therapy applicator is present and one in which it is not. By including the penalty term, a substantial improvement in the surface distance to the gold standard anatomical position and the residual volume of the applicator void are obtained. Registration of neighboring structures, i.e. the rectum and the bladder is generally improved as well, albeit to a lesser degree.


Assuntos
Algoritmos , Braquiterapia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias do Colo do Útero/radioterapia , Braquiterapia/normas , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas
7.
Int J Comput Assist Radiol Surg ; 8(6): 929-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23546993

RESUMO

PURPOSE: Automated segmentation is required for radiotherapy treatment planning, and multi-atlas methods are frequently used for this purpose. The combination of multiple intermediate results from multi-atlas segmentation into a single segmentation map can be achieved by label fusion. A method that includes expert knowledge in the label fusion phase of multi-atlas-based segmentation was developed. The method was tested by application to prostate segmentation, and the accuracy was compared to standard techniques. METHODS: The selective and iterative method for performance level estimation (SIMPLE) algorithm for label fusion was modified with a weight map given by an expert that indicates the importance of each region in the evaluation of segmentation results. Voxel-based weights specified by an expert when performing the label fusion step in atlas-based segmentation were introduced into the modified SIMPLE algorithm. These weights incorporate expert knowledge on accuracy requirements in different regions of a segmentation. Using this knowledge, segmentation accuracy in regions known to be important can be improved by sacrificing segmentation accuracy in less important regions. Contextual information such as the presence of vulnerable tissue is then used in the segmentation process. This method using weight maps to fine-tune the result of multi-atlas-based segmentation was tested using a set of 146 atlas images consisting of an MR image of the lower abdomen and a prostate segmentation. Each image served as a target in a set of leave-one-out experiments. These experiments were repeated for a weight map derived from the clinical practice in our hospital. RESULTS: The segmentation accuracy increased 6 % in regions that border vulnerable tissue using expert-specified voxel-based weight maps. This was achieved at the cost of a 4 % decrease in accuracy in less clinically relevant regions. CONCLUSION: The inclusion of expert knowledge in a multi-atlas-based segmentation procedure was shown to be feasible for prostate segmentation. This method allows an expert to ensure that automatic segmentation is most accurate in critical regions. This improved local accuracy can increase the practical value of automatic segmentation.


Assuntos
Imageamento por Ressonância Magnética/métodos , Próstata/patologia , Algoritmos , Humanos , Masculino , Reprodutibilidade dos Testes
8.
Med Phys ; 33(7): 2344-53, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16898436

RESUMO

A commonly used approach to quantify and minimize patient setup errors is by using electronic portal imaging devices (EPIDs). The position of the tumor can be verified indirectly by matching the bony anatomy to a reference image containing the same structures. In this paper we present two off-line methods for detecting the position of the bony anatomy automatically, even if every single portal image of each segment of an IMRT treatment beam contains insufficient matching information. Extra position verification fields will no longer be necessary, which reduces the total dose to the patient. The first method, the stack matching method (SMM), stacks the portal image of each segment of a beam to a three dimensional (3D) volume, and this volume is subsequently used during the matching phase. The second method [the averaged projection matching method (APMM)], is a simplification of the first one, since the initially created volume is reduced again to a 2D artificial image, which speeds up the matching procedure considerably, without a significant loss of accuracy. Matching is based on normalized mutual information. We demonstrate our methods by comparing them to existing matching routines, such as matching based on the largest segment. Both phantom and patient experiments show that our methods are comparable with the results obtained from standard position verification methods. The matches are verified by means of visual inspection. Furthermore, we show that when a distinct area of 40-60 cm2 of the EPID is exposed during one treatment beam, both SMM and APMM are able to deliver a good matching result.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Processamento de Imagem Assistida por Computador , Movimento , Aceleradores de Partículas , Imagens de Fantasmas , Fótons , Radiometria/métodos , Dosagem Radioterapêutica
9.
Phys Med Biol ; 50(10): N101-8, 2005 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15876660

RESUMO

Registration of different imaging modalities such as CT, MRI, functional MRI (fMRI), positron (PET) and single photon (SPECT) emission tomography is used in many clinical applications. Determining the quality of any automatic registration procedure has been a challenging part because no gold standard is available to evaluate the registration. In this note we present a method, called the 'multiple sub-volume registration' (MSR) method, for assessing the consistency of a rigid registration. This is done by registering sub-images of one data set on the other data set, performing a crude non-rigid registration. By analysing the deviations (local deformations) of the sub-volume registrations from the full registration we get a measure of the consistency of the rigid registration. Registration of 15 data sets which include CT, MR and PET images for brain, head and neck, cervix, prostate and lung was performed utilizing a rigid body registration with normalized mutual information as the similarity measure. The resulting registrations were classified as good or bad by visual inspection. The resulting registrations were also classified using our MSR method. The results of our MSR method agree with the classification obtained from visual inspection for all cases (p < 0.02 based on ANOVA of the good and bad groups). The proposed method is independent of the registration algorithm and similarity measure. It can be used for multi-modality image data sets and different anatomic sites of the patient.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Técnica de Subtração , Inteligência Artificial , Humanos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Phys Med Biol ; 49(17): 4109-18, 2004 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-15470926

RESUMO

Integrating magnetic resonance imaging (MRI) functionality with a radiotherapy accelerator can facilitate on-line, soft-tissue based, position verification. A technical feasibility study, in collaboration with Elekta Oncology Systems and Philips Medical Systems, led to the preliminary design specifications of a MRI accelerator. Basically the design is a 6 MV accelerator rotating around a 1.5 T MRI system. Several technical issues and the clinical rational are currently under investigation. The aim of this paper is to determine the impact of the transverse 1.5 T magnetic field on the dose deposition. Monte Carlo simulations were used to calculate the dose deposition kernel in the presence of 1.5 T. This kernel in turn was used to determine the dose deposition for larger fields. Also simulations and measurements were done in the presence of 1.1 T. The pencil beam dose deposition is asymmetric. For larger fields the asymmetry persists but decreases. For the latter the distance to dose maximum is reduced by approximately 5 mm, the penumbra is increased by approximately 1 mm, and the 50% isodose line is shifted approximately 1 mm. The dose deposition in the presence of 1.5 T is affected, but the effect can be taken into account in a conventional treatment planning procedure. The impact of the altered dose deposition for clinical IMRT treatments is the topic of further research.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Magnetismo , Aceleradores de Partículas , Radioterapia Conformacional/instrumentação , Radioterapia Conformacional/métodos , Simulação por Computador , Campos Eletromagnéticos , Humanos , Modelos Teóricos , Método de Monte Carlo , Fótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
11.
Phys Med Biol ; 49(12): 2645-56, 2004 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-15272679

RESUMO

In this study, we present the design for an alternative MLC system that allows high precision shaping of large fields. The MLC system consists of three layers of two opposing leaf banks. The layers are rotated 60 degrees relative to each other. The leaves in each bank have a standard width of 1 cm projected at the isocentre. Because of the symmetry of the collimator set-up it is expected that collimator rotation will not be required, thus simplifying the construction considerably. A 3D ray tracing computer program was developed in order to simulate the fluence profile for a given collimator and used to optimize the design and investigate its performance. The simulations show that a six-bank collimator will afford field shaping of fields of about 40 cm diameter with a precision comparable to that of existing mini MLCs with a leaf width of 4 mm.


Assuntos
Análise de Falha de Equipamento/métodos , Modelos Estatísticos , Radiometria/métodos , Radioterapia Conformacional/instrumentação , Simulação por Computador , Desenho de Equipamento , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA