Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cancer Res ; 77(7): 1684-1696, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202518

RESUMO

Poor prognosis of ovarian cancer, the deadliest of the gynecologic malignancies, reflects major limitations associated with detection and diagnosis. Current methods lack high sensitivity to detect small tumors and high specificity to distinguish malignant from benign tissue, both impeding diagnosis of early and metastatic cancer stages and leading to costly and invasive surgeries. Tissue microarray analysis revealed that >98% of ovarian cancers express the prolactin receptor (PRLR), forming the basis of a new molecular imaging strategy. We fused human placental lactogen (hPL), a specific and tight binding PRLR ligand, to magnetic resonance imaging (gadolinium) and near-infrared fluorescence imaging agents. Both in tissue culture and in mouse models, these imaging bioconjugates underwent selective internalization into ovarian cancer cells via PRLR-mediated endocytosis. Compared with current clinical MRI techniques, this targeted approach yielded both enhanced signal-to-noise ratio from accumulation of signal via selective internalization and improved specificity conferred by PRLR upregulation in malignant ovarian cancer. These features endow PRLR-targeted imaging with the potential to transform ovarian cancer detection. Cancer Res; 77(7); 1684-96. ©2017 AACR.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias Epiteliais e Glandulares/diagnóstico por imagem , Neoplasias Ovarianas/diagnóstico por imagem , Receptores da Prolactina/fisiologia , Animais , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Endocitose , Feminino , Gadolínio DTPA , Humanos , Camundongos , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Lactogênio Placentário/metabolismo , Prolactina/metabolismo , Receptores da Prolactina/análise , Sensibilidade e Especificidade , Análise Serial de Tecidos
2.
J Invertebr Pathol ; 142: 50-59, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27235983

RESUMO

The need for sustainable insect pest control is driving the investigation and discovery of insecticidal proteins outside of the typical 3-domain Cry protein family from Bacillus thuringiensis (Bt). Examples include Cry35 and Cry51 that belong to protein families (Toxin_10, ETX_MTX2) sharing a common ß-pore forming structure and function with known mammalian toxins such as epsilon toxin (ETX). Although ß-pore forming proteins are related to mammalian toxins, there are key differences in sequence and structure that lead to organism specificity that is useful in the weight-of-evidence approach for safety assessment. Despite low overall amino acid sequence identity among ETX_MTX2 proteins, sequence and structural similarities are found in the tail region responsible for the shared oligomerization and pore formation functions (causing the "relatedness"). Conversely, most of the sequence and structural diversity is located in the head region that is likely responsible for differential receptor binding and target species specificity (e.g., insecticidal vs. mammalian). Therefore, inclusion of a domain-based protein characterization approach that includes bioinformatic and functional comparisons of conserved and diverse domains will enhance the overall weight of evidence safety assessment of proteins including recently reported Cry51 protein variants (Cry51Aa1, Cry51Aa2, and Cry51Aa2.834_16).


Assuntos
Biologia Computacional/métodos , Endotoxinas/classificação , Inseticidas/classificação , Modelos Moleculares , Controle Biológico de Vetores/métodos , Sequência de Aminoácidos , Animais , Endotoxinas/química , Endotoxinas/genética , Inseticidas/química , Inseticidas/metabolismo , Relação Estrutura-Atividade
3.
Arch Biochem Biophys ; 600: 1-11, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27001423

RESUMO

The cotton pests Lygus hesperus and Lygus lineolaris can be controlled by expressing Cry51Aa2.834_16 in cotton. Insecticidal activity of pore-forming proteins is generally associated with damage to the midgut epithelium due to pores, and their biological specificity results from a set of key determinants including proteolytic activation and receptor binding. We conducted mechanistic studies to gain insight into how the first Lygus-active ß-pore forming protein variant functions. Biophysical characterization revealed that the full-length Cry51Aa2.834_16 was a stable dimer in solution, and when exposed to Lygus saliva or to trypsin, the protein underwent proteolytic cleavage at the C-terminus of each of the subunits, resulting in dissociation of the dimer to two separate monomers. The monomer showed tight binding to a specific protein in Lygus brush border membranes, and also formed a membrane-associated oligomeric complex both in vitro and in vivo. Chemically cross-linking the ß-hairpin to the Cry51Aa2.834_16 body rendered the protein inactive, but still competent to compete for binding sites with the native protein in vivo. Our study suggests that disassociation of the Cry51Aa2.834_16 dimer into monomeric units with unoccupied head-region and sterically unhindered ß-hairpin is required for brush border membrane binding, oligomerization, and the subsequent steps leading to insect mortality.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Endotoxinas/química , Proteínas Hemolisinas/química , Proteínas Hemolisinas/ultraestrutura , Heterópteros/química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/ultraestrutura , Saliva/química , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Sítios de Ligação , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Proteínas de Insetos , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Ligação Proteica , Conformação Proteica , Sobrevida , Tripsina/química
4.
Cell Commun Signal ; 13: 1, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25589173

RESUMO

BACKGROUND: Many receptors function by binding to multiple ligands, each eliciting a distinct biological output. The extracellular domain of the human prolactin receptor (hPRL-R) uses an identical epitope to bind to both prolactin (hPRL) and growth hormone (hGH), yet little is known about how each hormone binding event triggers the appropriate response. FINDINGS: Here, we utilized a phage display library to generate synthetic antibodies (sABs) that preferentially modulate hPRL-R function in a hormone-dependent fashion. We determined the crystal structure of a sAB-hPRL-R complex, which revealed a novel allosteric mechanism of antagonism, whereby the sAB traps the receptor in a conformation more suitable for hGH binding than hPRL. This was validated by examining the effect of the sABs on hormone internalization via the hPRL-R and its downstream signaling pathway. CONCLUSIONS: The findings suggest that subtle structural changes in the extracellular domain of hPRL-R induced by each hormone determine the biological output triggered by hormone binding. We conclude that sABs generated by phage display selection can detect these subtle structural differences, and therefore can be used to dissect the structural basis of receptor-ligand specificity.


Assuntos
Epitopos , Receptores da Prolactina , Transdução de Sinais , Anticorpos de Cadeia Única , Epitopos/química , Epitopos/genética , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/genética , Humanos , Prolactina/química , Prolactina/genética , Estrutura Terciária de Proteína , Receptores da Prolactina/química , Receptores da Prolactina/genética , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética
5.
PLoS One ; 9(4): e94238, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24736658

RESUMO

ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Deleção de Sequência/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Peso Corporal/genética , Núcleo Celular/metabolismo , Sequência Consenso , Expressão Gênica , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Protoplastos/metabolismo , Reprodução , Fatores de Transcrição/química , Transcrição Gênica , Zea mays/citologia , Zea mays/fisiologia
6.
J Biol Chem ; 281(31): 22378-22385, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16762925

RESUMO

A novel, quantitative saturation (QS) scanning strategy was developed to obtain a comprehensive data base of the structural and functional effects of all possible mutations across a large protein-protein interface. The QS scan approach was applied to the high affinity site of human growth hormone (hGH) for binding to its receptor (hGHR). Although the published structure-function data base describing this system is probably the most extensive for any large protein-protein interface, it is nonetheless too sparse to accurately describe the nature of the energetics governing the interaction. Our comprehensive data base affords a complete view of the binding site and provides important new insights into the general principles underlying protein-protein interactions. The hGH binding interface is highly adaptable to mutations, but the nature of the tolerated mutations challenges generally accepted views about the evolutionary and biophysical pressures governing protein-protein interactions. Many substitutions that would be considered chemically conservative are not tolerated, while conversely, many non-conservative substitutions can be accommodated. Furthermore, conservation across species is a poor predictor of the chemical character of tolerated substitutions across the interface. Numerous deviations from generally accepted expectations indicate that mutational tolerance is highly context dependent and, furthermore, cannot be predicted by our current knowledge base. The type of data produced by the comprehensive QS scan can fill the gaps in the structure-function matrix. The compilation of analogous data bases from studies of other protein-protein interactions should greatly aid the development of computational methods for explaining and designing molecular recognition.


Assuntos
Substituição de Aminoácidos , Modelos Moleculares , Proteínas/metabolismo , Alanina/genética , Biologia Computacional , Hormônio do Crescimento Humano/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Biblioteca de Peptídeos , Ligação Proteica/genética , Proteínas/genética
7.
Mol Cell Biol ; 26(11): 4052-62, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16705159

RESUMO

The tyrosine kinase JAK2 is a key signaling protein for at least 20 receptors in the cytokine/hematopoietin receptor superfamily and is a component of signaling for multiple receptor tyrosine kinases and several G-protein-coupled receptors. In this study, phosphopeptide affinity enrichment and mass spectrometry identified serine 523 (Ser523) in JAK2 as a site of phosphorylation. A phosphoserine 523 antibody revealed that Ser523 is rapidly but transiently phosphorylated in response to growth hormone (GH). MEK1 inhibitor UO126 suppresses GH-dependent phosphorylation of Ser523, suggesting that extracellular signal-regulated kinases (ERKs) 1 and/or 2 or another kinase downstream of MEK1 phosphorylate Ser523 in response to GH. Other ERK activators, phorbol 12-myristate 13-acetate and epidermal growth factor, also stimulate phosphorylation of Ser523. When Ser523 in JAK2 was mutated, JAK2 kinase activity as well as GH-dependent tyrosyl phosphorylation of JAK2 and Stat5 was enhanced, suggesting that phosphorylation of Ser523 inhibits JAK2 kinase activity. We hypothesize that phosphorylation of Ser523 in JAK2 by ERKs 1 and/or 2 or other as-yet-unidentified kinases acts in a negative feedback manner to dampen activation of JAK2 in response to GH and provides a mechanism by which prior exposure to environmental factors that regulate Ser523 phosphorylation might modulate the cell's response to GH.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Fosfosserina/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Células 3T3 , Alanina/genética , Animais , Butadienos/farmacologia , Células COS , Células Cultivadas , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Humanos , Janus Quinase 2 , MAP Quinase Quinase 1/antagonistas & inibidores , Espectrometria de Massas , Camundongos , Mutação/genética , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Fator de Transcrição STAT5/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
8.
J Biol Chem ; 280(27): 25524-32, 2005 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15857837

RESUMO

The high affinity binding site (Site1) of the human growth hormone (hGH) binds to its cognate receptor (hGHR) via a concave surface patch containing about 35 residues. Using 167 sequences from a shotgun alanine scanning analysis of Site1, we have determined that over half of these residues can be simultaneously changed to an alanine or a non-isosteric amino acid while still retaining a high affinity interaction. Among these hGH variants the distribution of the mutation is highly variable throughout the interface, although helix 4 is more conserved than the other binding elements. Kinetic and thermodynamic analyses were performed on 11 representative hGH Site1 variants that contained 14-20 mutations. Generally, the tightest binding variants showed similar associated rate constants (k(on)) as the wild-type (wt) hormone, indicating that their binding proceeds through a similar transition state intermediate. However, calorimetric analyses indicate very different thermodynamic partitioning: wt-hGH binding exhibits favorable enthalpy and entropy contributions, whereas the variants display highly favorable enthalpy and highly unfavorable entropy contributions. The heat capacities (DeltaCp) on binding measured for wt-hGH and its variants are significantly larger than normally seen for typical protein-protein interactions, suggesting large conformational or solvation effects. The multiple Site1 mutations are shown to indirectly affect binding of the second receptor at Site2 through an allosteric mechanism. We show that the stability of the ternary hormone-receptor complex reflects the affinity of the Site2 binding and is surprisingly exempt from changes in Site1 affinity, directly demonstrating that dissociation of the active signaling complex is a stepwise process.


Assuntos
Sítios de Ligação/fisiologia , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/metabolismo , Receptores da Somatotropina/metabolismo , Alanina/genética , Regulação Alostérica , Sequência de Aminoácidos , Dimerização , Entropia , Biblioteca Gênica , Hormônio do Crescimento Humano/genética , Humanos , Cinética , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína , Receptores da Somatotropina/química , Termodinâmica
9.
Mol Cell Biol ; 24(10): 4557-70, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15121872

RESUMO

The tyrosine kinase Janus kinase 2 (JAK2) binds to the majority of the known members of the cytokine family of receptors. Ligand-receptor binding leads to activation of the associated JAK2 molecules, resulting in rapid autophosphorylation of multiple tyrosines within JAK2. Phosphotyrosines can then serve as docking sites for downstream JAK2 signaling molecules. Despite the importance of these phosphotyrosines in JAK2 function, only a few sites and binding partners have been identified. Using two-dimensional phosphopeptide mapping and a phosphospecific antibody, we identified tyrosine 813 as a site of JAK2 autophosphorylation of overexpressed JAK2 and endogenous JAK2 activated by growth hormone. Tyrosine 813 is contained within a YXXL sequence motif associated with several other identified JAK2 phosphorylation sites. We show that phosphorylation of tyrosine 813 is required for the SH2 domain-containing adapter protein SH2-B beta to bind JAK2 and to enhance the activity of JAK2 and STAT5B. The homologous tyrosine in JAK3, tyrosine 785, is autophosphorylated in response to interleukin-2 stimulation and is required for SH2-B beta to bind JAK3. Taken together these data strongly suggest that tyrosine 813 is a site of autophosphorylation in JAK2 and is the SH2-B beta-binding site within JAK2 that is required for SH2-B beta to enhance activation of JAK2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas , Células 3T3 , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Células COS , Proteínas de Transporte/genética , Linhagem Celular , DNA/genética , Ativação Enzimática/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Humanos , Janus Quinase 2 , Camundongos , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Tirosina Quinases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , Tirosina/química
10.
Mol Cell Biol ; 24(11): 4955-67, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15143187

RESUMO

The tyrosine kinase JAK2 is a key signaling protein for at least 20 receptors in the cytokine/hematopoietin receptor superfamily and is a component of signaling by insulin receptor and several G-protein-coupled receptors. However, there is only limited knowledge of the physical structure of JAK2 or which of the 49 tyrosines in JAK2 are autophosphorylated. In this study, mass spectrometry and two-dimensional peptide mapping were used to determine that tyrosines 221, 570, and 1007 in JAK2 are autophosphorylated. Phosphorylation of tyrosine 570 is particularly robust. In response to growth hormone, JAK2 was rapidly and transiently phosphorylated at tyrosines 221 and 570, returning to basal levels by 60 min. Analysis of the sequences surrounding tyrosines 221 and 570 in JAK2 and tyrosines in other proteins that are phosphorylated in response to ligands that activate JAK2 suggests that the YXX[L/I/V] motif is one of the motifs recognized by JAK2. Experiments using JAK2 with tyrosines 221 and 570 mutated to phenylalanine suggest that tyrosines 221 and 570 in JAK2 may serve as regulatory sites in JAK2, with phosphorylation of tyrosine 221 increasing kinase activity and phosphorylation of tyrosine 570 decreasing kinase activity and thereby contributing to rapid termination of ligand activation of JAK2.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas , Tirosina/metabolismo , Animais , Hormônio do Crescimento/metabolismo , Técnicas In Vitro , Janus Quinase 2 , Espectrometria de Massas , Camundongos , Fosforilação , Proteínas Tirosina Quinases/química , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA