Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Rep ; 12(1): 14816, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045218

RESUMO

The vertebrate sense of smell employs four main receptor families for detection of odors, among them the V1R/ORA family, which is unusually small and highly conserved in teleost fish. Zebrafish possess just seven ORA receptors, enabling a comprehensive analysis of the expression patterns of the entire family. The olfactory organ of zebrafish is representative for teleosts, cup-shaped, with lamella covered with sensory epithelium protruding into the cup from a median raphe. We have performed quantitative in situ hybridization on complete series of horizontal cryostat sections of adult zebrafish olfactory organ, and have analysed the location of ora-expressing cells in three dimensions, radial diameter, laminar height, and height-within-the-organ. We report broadly overlapping, but distinctly different distributions for all ora genes, even for ora3a and ora3b, the most recent gene duplication. Preferred positions in different dimensions are independent of each other. This spatial logic is very similar to previous reports for the much larger families of odorant receptor (or) and V2R-related olfC genes in zebrafish. Preferred positions for ora genes tend to be more central and more apical than those we observed for these other two families, consistent with expression in non-canonical sensory neuron types.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Seleção Genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Chem Senses ; 472022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522082

RESUMO

The sense of smell employs some of the largest gene families in the genome to detect and distinguish a multitude of different odors. Within vertebrates, 4 major olfactory receptor families have been described; of which, only 3 (OR, TAAR-like, and V1R) were found already in lamprey, a jawless vertebrate. The forth family (V2R) was believed to have originated later, in jawed vertebrates. Here we have delineated the entire vomeronasal receptor repertoire in 3 lamprey species. We report the presence of 6 v1r and 2 v2r genes in Lethenteron camtschaticum, arctic lamprey, and Lampetra fluviatilis, river lamprey (6 and 1, respectively, in sea lamprey, Petromyzon marinus). Three v1r genes but no v2r genes were found to be expressed in olfactory sensory neurons in the characteristic sparse expression pattern. Our results show the olfactory function of some V1Rs already in lamprey and, unexpectedly, an early origin of the V2R family in the shared ancestor of jawed and jawless vertebrates. However, lamprey v2r genes appear not to have acquired an olfactory function yet, thus dissociating the evolutionary origin of the family from the onset of a function as olfactory receptor.


Assuntos
Neurônios Receptores Olfatórios , Petromyzon , Receptores Odorantes , Órgão Vomeronasal , Animais , Petromyzon/genética , Filogenia , Receptores Odorantes/genética , Olfato/fisiologia , Vertebrados/genética
3.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34499158

RESUMO

Nucleotides are an important class of odorants for aquatic vertebrates such as frogs and fishes, but also have manifold signaling roles in other cellular processes. Recently, an adenosine receptor believed to belong to the adora2 clade has been identified as an olfactory receptor in zebrafish. Here, we set out to elucidate the evolutionary history of both this gene and its olfactory function. We have performed a thorough phylogenetic study in vertebrates, chordates and their sister group, ambulacraria, and show that the origin of the zebrafish olfactory receptor gene can be traced back to the most recent common ancestor of all three groups as a segregate sister clade (adorb) to the adora gene family. Eel, carp, and clawed frog all express adorb in a sparse and distributed pattern within their olfactory epithelium very similar to the pattern observed for zebrafish that is, consistent with a function as olfactory receptor. In sharp contrast, lamprey adorb-expressing cells are absent from the sensory region of the lamprey nose, but form a contiguous domain directly adjacent to the sensory region. Double-labeling experiments confirmed the expression of lamprey adorb in nonneuronal cells and are consistent with an expression in neuronal progenitor cells. Thus, adorb may have undergone a switch of function in the jawed lineage of vertebrates towards a role as olfactory receptor.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Neurônios Receptores Olfatórios/fisiologia , Filogenia , Receptores Odorantes/genética , Receptores Purinérgicos P1/genética , Peixe-Zebra/genética
4.
Sci Rep ; 11(1): 7807, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833329

RESUMO

Olfactory receptor families have arisen independently several times during evolution. The origin of taar genes, one of the four major vertebrate olfactory receptor families, is disputed. We performed a phylogenetic analysis making use of 96 recently available genomes, and report that olfactory functionality has arisen twice independently within the TAAR family, once in jawed and once in jawless fish. In lamprey, an ancestral gene expanded to generate a large family of olfactory receptors, while the sister gene in jawed vertebrates did not expand and is not expressed in olfactory sensory neurons. Both clades do not exhibit the defining TAAR motif, and we suggest naming them taar-like receptors (tarl). We have identified the evolutionary origin of both taar and tarl genes in a duplication of the serotonergic receptor 4 that occurred in the most recent common ancestor of vertebrates. We infer two ancestral genes in bony fish (TAAR12, TAAR13) which gave rise to the complete repertoire of mammalian olfactory taar genes and to class II of the taar repertoire of teleost fish. We follow their evolution in seventy-one bony fish genomes and report a high evolutionary dynamic, with many late gene birth events and both early and late gene death events.


Assuntos
Evolução Molecular , Neurônios Receptores Olfatórios/metabolismo , Receptores Acoplados a Proteínas G , Receptores Odorantes/genética , Animais , Peixes/genética
5.
J Neurosci ; 41(13): 2911-2929, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33531417

RESUMO

In the best studied cases (Aplysia feeding, crustacean stomatogastric system), peptidergic modulation is mediated by large numbers of peptides. Furthermore, in Aplysia, excitatory motor neurons release the peptides, obligatorily coupling target activation and modulator release. Vertebrate nervous systems typically contain about a hundred peptide modulators. These data have created a belief that modulation is, in general, complex. The stick insect leg is a well-studied locomotory model system, and the complete stick insect neuropeptide inventory was recently described. We used multiple techniques to comprehensively examine stick insect leg peptidergic modulation. Single-cell mass spectrometry (MS) and immunohistochemistry showed that myoinhibitory peptide (MIP) is the only neuronal (as opposed to hemolymph-borne) peptide modulator of all leg muscles. Leg muscle excitatory motor neurons contained no neuropeptides. Only the common inhibitor (CI) and dorsal unpaired median (DUM) neuron groups, each neuron of which innervates a group of functionally-related leg muscles, contained MIP. We described MIP transport to, and receptor presence in, one leg muscle, the extensor tibiae (ExtTi). MIP application reduced ExtTi slow fiber force and shortening by about half, increasing the muscle's ability to contract and relax rapidly. These data show neuromodulation does not need to be complex. Excitation and modulation do not need to be obligatorily coupled (Aplysia feeding). Modulation does not need to involve large numbers of peptides, with the attendant possibility of combinatorial explosion (stomatogastric system). Modulation can be simple, mediated by dedicated regulatory neurons, each innervating a single group of functionally-related targets, and all using the same neuropeptide.SIGNIFICANCE STATEMENT Vertebrate and invertebrate nervous systems contain large numbers (around a hundred in human brain) of peptide neurotransmitters. In prior work, neuropeptide modulation has been complex, either obligatorily coupling postsynaptic excitation and modulation, or large numbers of peptides modulating individual neural networks. The complete stick insect neuropeptide inventory was recently described. We comprehensively describe here peptidergic modulation in the stick insect leg. Surprisingly, out of the large number of potential peptide transmitters, only myoinhibitory peptide (MIP) was present in neurons innervating leg muscles. Furthermore, the peptide was present only in dedicated regulatory neurons, not in leg excitatory motor neurons. Peptidergic modulation can thus be simple, neither obligatorily coupling target activation and modulation nor involving so many peptides that combinatorial explosion can occur.


Assuntos
Proteínas de Drosophila/metabolismo , Gânglios dos Invertebrados/metabolismo , Proteínas de Insetos/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Feminino , Gânglios dos Invertebrados/química , Proteínas de Insetos/análise , Proteínas de Insetos/genética , Insetos , Músculo Esquelético/química
6.
Curr Biol ; 29(4): 677-685.e6, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30713108

RESUMO

Dopaminergic neurons in the substantia nigra (SNc) innervate both striatum and the superior colliculus in mammals, as well as its homolog the optic tectum in lampreys, belonging to the oldest group of living vertebrates [1-3]. In the lamprey, we have previously shown that the same neuron sends axonal branches to both striatum and the optic tectum [3]. Here, we show that most neurons in the lamprey SNc and ventral tegmental area (VTA) (also referred to as the nucleus of the posterior tuberculum) express not only tyrosine hydroxylase (TH), in lamprey a marker of dopaminergic neurons [4], but also the vesicular glutamate transporter (vGluT), suggesting that glutamate is a co-transmitter. Remarkably, the axonal branches that project to striatum elicit both dopaminergic and glutamatergic synaptic effects on striatal neurons, whereas the axonal projections to the optic tectum only evoke dopaminergic effects. Thus, axonal branches from the same neuron can use two transmitters in one branch and only one in the other. Previous studies suggest that, along an individual dopaminergic axon, there can be microdomains of either TH or vGluT [5-8]. In addition, the present results demonstrate that entire axonal branches to one target structure can differ from that of branches to another target, both originating from the same dopamine neuron. This implies that a given dopamine neuron can exert different effects on two different target structures. The combined release of dopamine and glutamate may be appropriate in striatum, whereas the effects exerted on the tectal motor center may be better served with a selective dopaminergic modulation.


Assuntos
Corpo Estriado/fisiologia , Neurônios Dopaminérgicos/fisiologia , Ácido Glutâmico/metabolismo , Lampreias/fisiologia , Substância Negra/fisiologia , Colículos Superiores/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Feminino , Masculino
7.
BMC Genomics ; 19(1): 383, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29792162

RESUMO

BACKGROUND: The sense of smell is unrivaled in terms of molecular complexity of its input channels. Even zebrafish, a model vertebrate system in many research fields including olfaction, possesses several hundred different olfactory receptor genes, organized in four different gene families. For one of these families, the initially discovered odorant receptors proper, segregation of expression into distinct spatial subdomains within a common sensory surface has been observed both in teleost fish and in mammals. However, for the remaining three families, little to nothing was known about their spatial coding logic. Here we wished to investigate, whether the principle of spatial segregation observed for odorant receptors extends to another olfactory receptor family, the V2R-related OlfC genes. Furthermore we thought to examine, how expression of OlfC genes is integrated into expression zones of odorant receptor genes, which in fish share a single sensory surface with OlfC genes. RESULTS: To select representative genes, we performed a comprehensive phylogenetic study of the zebrafish OlfC family, which identified a novel OlfC gene, reduced the number of pseudogenes to 1, and brought the total family size to 60 intact OlfC receptors. We analyzed the spatial pattern of OlfC-expressing cells for seven representative receptors in three dimensions (height within the epithelial layer, horizontal distance from the center of the olfactory organ, and height within the olfactory organ). We report non-random distributions of labeled neurons for all OlfC genes analysed. Distributions for sparsely expressed OlfC genes are significantly different from each other in nearly all cases, broad overlap notwithstanding. For two of the three coordinates analyzed, OlfC expression zones are intercalated with those of odorant receptor zones, whereas in the third dimension some segregation is observed. CONCLUSION: Our results show that V2R-related OlfC genes follow the same spatial logic of expression as odorant receptors and their expression zones intermingle with those of odorant receptor genes. Thus, distinctly different expression zones for individual receptor genes constitute a general feature shared by teleost and tetrapod V2R/OlfC and odorant receptor families alike.


Assuntos
Perfilação da Expressão Gênica , Receptores Odorantes/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Olfato/genética , Peixe-Zebra/fisiologia
8.
Sci Rep ; 4: 4037, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24509431

RESUMO

Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.


Assuntos
Bulbo Olfatório/fisiologia , Percepção Olfatória , Neurônios Receptores Olfatórios/fisiologia , Peixe-Zebra/anatomia & histologia , Actinas/imunologia , Animais , Anticorpos/imunologia , Imuno-Histoquímica , Neurônios Receptores Olfatórios/imunologia , Olfato , Coloração e Rotulagem , Tubulina (Proteína)/imunologia , Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA