Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Appl Environ Microbiol ; : e0078924, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780259

RESUMO

Desiccation tolerance of pathogenic bacteria is one strategy for survival in harsh environments, which has been studied extensively. However, the subsequent survival behavior of desiccation-stressed bacterial pathogens has not been clarified in detail. Herein, we demonstrated that the effect of desiccation stress on the thermotolerance of Escherichia coli O157:H7 in ground beef was limited, and its thermotolerance did not increase. E. coli O157:H7 was inoculated into a ground beef hamburger after exposure to desiccation stress. We combined a bacterial inactivation model with a heat transfer model to predict the survival kinetics of desiccation-stressed E. coli O157:H7 in a hamburger. The survival models were developed using the Weibull model for two-dimensional pouched thin beef patties (ca. 1 mm), ignoring the temperature gradient in the sample, and a three-dimensional thick beef patty (ca. 10 mm), considering the temperature gradient in the sample. The two-dimensional (2-D) and three-dimensional (3-D) models were subjected to stochastic variations of the estimated Weibull parameters obtained from 1,000 replicated bootstrapping based on isothermal experimental observations as uncertainties. Furthermore, the 3-D model incorporated temperature gradients in the sample calculated using the finite element method. The accuracies of both models were validated via experimental observations under non-isothermal conditions using 100 predictive simulations. The root mean squared errors in the log survival ratio of the 2-D and 3-D models for 100 simulations were 0.25-0.53 and 0.32-2.08, respectively, regardless of the desiccation stress duration (24 or 72 h). The developed approach will be useful for setting appropriate process control measures and quantitatively assessing food safety levels.IMPORTANCEAcquisition of desiccation stress tolerance in bacterial pathogens might increase thermotolerance as well and increase the risk of foodborne illnesses. If a desiccation-stressed pathogen enters a kneaded food product via cross-contamination from a food-contact surface and/or utensils, proper estimation of the internal temperature changes in the kneaded food during thermal processing is indispensable for predicting the survival kinetics of desiccation-stressed bacterial cells. Various survival kinetics prediction models that consider the uncertainty or variability of pathogenic bacteria during thermal processing have been developed. Furthermore, heat transfer processes in solid food can be estimated using finite element method software. The present study demonstrated that combining a heat transfer model with a bacterial inactivation model can predict the survival kinetics of desiccation-stressed bacteria in a ground meat sample, corresponding to the temperature gradient in a solid sample during thermal processing. Combining both modeling procedures would enable the estimation of appropriate bacterial survival kinetics in solid food.

2.
J Food Prot ; 86(10): 100140, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562514

RESUMO

Melanoidins produced from the combination of D-xylose and L-phenylalanine have been reported to exhibit strong antibacterial effects. This study investigated the influence of environmental factors, such as temperatures (10, 15, 20, 25, 30, 35, 40, and 45°C), pH (5.5, 6.0, 6.5, 7.0, 7.5, and 8.0), and water activity (aw: 0.99, 0.96, and 0.93), on the antibacterial effect of the melanoidins produced from the combination of D-xylose with L-phenylalanine against Bacillus cereus and Clostridium perfringens in culture media. Furthermore, freeze-dried powdered melanoidin was used to determine the minimum concentration for growth inhibition, to compare the antibacterial effect of the melanoidin with conventional food preservatives. The liquid melanoidins significantly inhibited the growth of B. cereus (up to 4 log CFU/mL at the maximum) and C. perfringens (up to 6.5 log CFU/mL at the maximum) regardless of the incubation temperatures. However, the remarkable difference between the presence and absence of the melanoidins was demonstrated in the range of 20-35°C as 4 log-cycle lower in B. cereus and 2 log-cycle lower in C. perfringens than those without the melanoidins. The antibacterial effect of the melanoidin on B. cereus was not influenced by pH from 5.5 to 7.0, which exhibited 2-3 log-cycle lower viable counts than those without the melanoidin. Only one log-cycle difference between with and without the melanoidin was shown in C. perfringens growth under the pH range of 5.5-7.0. Although there was no significant difference in the growth of B. cereus between three aw conditions, the melanoidin exhibited a significant antibacterial effect at aw 0.99 demonstrating 4 log-cycle lower viable numbers than those without the melanoidin. Minimum inhibitory concentration of the melanoidin powder for B. cereus and C. perfringens was 7 mg/mL and 15 mg/mL, respectively, regardless of the kind of foods. Furthermore, the melanoidin exhibited comparable antibacterial effect on B. cereus and C. perfringens to potassium sorbate and sodium benzoate under the same concentration as the minimum inhibitory concentration of the melanoidin, demonstrating 2 log-cycle reduction during 3 days of incubation period at 25°C. The results presented here suggest that the xylose- and phenylalanine-based melanoidin demonstrates the possibility to be an alternative food preservative.


Assuntos
Clostridium perfringens , Xilose , Xilose/farmacologia , Bacillus cereus , Fenilalanina/farmacologia , Conservantes de Alimentos/farmacologia , Antibacterianos/farmacologia , Microbiologia de Alimentos
3.
Food Chem ; 429: 136907, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487393

RESUMO

The taste quality of rice is determined by protein and amylose percentages, with low levels indicating high-quality taste in Japan. However, accurate non-destructive screening remains a challenge for the industry. We explored the use of machine learning models and near-infrared spectra to classify rice taste quality. Three models were optimized using 796 brown rice samples from Hokkaido, Japan, produced between 2008 and 2016, and tested on 278 distinct samples from the same region produced between 2017 and 2019. Logistic regression and support vector machine models outperformed the partial least-squares discriminant analysis model, achieving high accuracy (94%), f1-score (90%), average precision (0.94), and low classification error (4%) and allowing accurate non-destructive classification of rice quality. These results not only improve rice quality, post-harvest technology, and producer output in Japan but also could enhance quality control processes and foster the production of high-quality products for other agricultural goods and food commodities worldwide.


Assuntos
Oryza , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Oryza/química , Paladar , Análise Discriminante , Algoritmos , Análise dos Mínimos Quadrados , Máquina de Vetores de Suporte
4.
J Microbiol Methods ; 192: 106366, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774875

RESUMO

To predict bacterial population behavior in food, statistical models with specific function form have been applied in the field of predictive microbiology. Modelers need to consider the linear or non-linear relationship between the response and explanatory variables in the statistical modeling approach. In the present study, we focused on machine learning methods to skip definition of primary and secondary structure model. Support vector regression, extremely randomized trees regression, and Gaussian process regression were used to predict population growth of Escherichia coli O157 at 15 and 25 °C without defining the primary and secondary models. Furthermore, the support vector regression model was applied to predict small population of bacteria cells with probability theory. The model performance of the machine learning models were nearly equal to that of the current statistical models. Machine learning models have a potential for predicting bacterial population behavior.


Assuntos
Carga Bacteriana/métodos , Escherichia coli O157/crescimento & desenvolvimento , Microbiologia de Alimentos/métodos , Máquina de Vetores de Suporte , Humanos , Crescimento Demográfico
5.
Food Microbiol ; 102: 103932, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809927

RESUMO

Campylobacter jejuni-related foodborne diseases are mainly attributed to the consumption of undercooked chicken meat and cross-contaminated produce. This study aimed to develop a survival kinetics model, based on the Weibull model, for predicting foodborne C. jejuni survival during gastric digestion in a model stomach. We previously confirmed that C. jejuni can survive temperatures up to 62 °C; therefore, certain types of grilled chicken skewers (yakitori) were examined for C. jejuni survival during simulated gastric digestion. C. jejuni survival on a chicken thigh following grilling was examined to confirm the foods for digestion experiments. Further, C. jejuni survival during model digestion was investigated through simultaneous digestion of raw chicken and cross-contaminated iceberg lettuce. The model stomach pH increased from 1.5 to 6.0 immediately after yakitori ingestion and did not decrease below 4.0 within 3 h of digestion. Gastric digestion did not significantly contribute to C. jejuni inactivation (<1.5 log reduction after 3 h digestion). Our model could predict C. jejuni survival kinetics in simulated gastric fluid under varying pH during model digestion. This approach can be used to predict C. jejuni survival rates following digestion to improve food safety and reduce Campylobacter-related disease outbreaks.


Assuntos
Campylobacter jejuni , Digestão , Produtos da Carne , Aves Domésticas/microbiologia , Animais , Galinhas , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Cinética , Produtos da Carne/microbiologia , Estômago
6.
J Appl Microbiol ; 132(2): 1467-1478, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34498377

RESUMO

AIMS: The biological events occurring during human digestion help to understand the mechanisms underlying the dose-response relationships of enteric bacterial pathogens. To better understand these events, we investigated the growth and reduction behaviour of bacterial pathogens in an in vitro model simulating the environment of the small intestine. METHODS AND RESULTS: The foodborne pathogens Campylobacter jejuni, Listeria monocytogenes and Escherichia coli O157:H7 were cultured with multiple competing enteric bacteria. Differences in the pathogen's growth kinetics due to the relative amount of competing enteric bacteria were investigated. These growth differences were described using a mathematical model based on Bayesian inference. When pathogenic and enteric bacteria were inoculated at 1 log CFU per ml and 9 log CFU per ml, respectively, L. monocytogenes was inactivated over time, while C. jejuni and E. coli O157:H7 survived without multiplying. However, as pathogen inocula were increased, its inhibition by enteric bacteria also decreased. CONCLUSIONS: Although the growth of pathogenic species was inhibited by enteric bacteria, the pathogens still survived. SIGNIFICANCE AND IMPACT OF THE STUDY: Competition experiments in a small-intestine model have enhanced understanding of the infection risk in the intestine and provide insights for evaluating dose-response relationships.


Assuntos
Campylobacter jejuni , Escherichia coli O157 , Microbioma Gastrointestinal , Listeria monocytogenes , Teorema de Bayes , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Humanos , Intestino Delgado , Cinética
7.
Microbiol Spectr ; 9(3): e0138421, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908438

RESUMO

To investigate the mechanism of adaptation of Cronobacter sakazakii to desiccation stress, the present study focused on the glass transition phenomenon of dried bacterial cells, using a thermomechanical technique. The mechanical glass transition temperature (Tg) of dried C. sakazakii cells per se, prepared by different drying methods (air drying and freeze-drying) and with different water activity (aw) levels (0.43, 0.57, 0.75, and 0.87), were determined. In addition, we investigated the survival of two strains of C. sakazakii (JCM 1233 and JCM 2127) prepared by different drying methods under different storage temperatures (4, 25, and 42°C) and aw conditions (0.43 and 0.87). While the Tg of the air-dried C. sakazakii cells increased as the aw decreased, the freeze-dried C. sakazakii cells showed an unclear aw dependency of the Tg. Air-dried C. sakazakii cells showed a higher Tg than freeze-dried C. sakazakii cells at an aw of <0.57. Freeze-dried C. sakazakii cells were more rapidly inactivated than air-dried cells regardless of the difference in aw and temperature. The difference between the Tg and storage temperature was used as an index that took into consideration the differences in the drying methods and aw levels. As the difference between the Tg and storage temperature increased to >20°C, the dried C. sakazakii cells survived stably regardless of the drying method. In contrast, when the difference between the Tg and storage temperature was reduced to <10°C, the viable cell numbers in dried C. sakazakii cells were quickly decreased. Thus, the Tg is a key factor affecting the desiccation tolerance of C. sakazakii. IMPORTANCE The mechanical glass transition temperature (Tg) of dried Cronobacter sakazakii cells varied depending on differences in drying methods and water activity (aw) levels. Because the Tg of the dried bacterial cells varied depending on the drying method and aw, the Tg will play an important role as an operational factor in the optimization of dry food processing for controlling microbial contamination in the future. Furthermore, the differences between the Tg and storage temperature were introduced as an integrated index for survival of bacterial cells under a desiccation environment that took into consideration the differences in the drying methods and aw levels. As the difference between the Tg and storage temperature decreased to <10°C, the dried C. sakazakii cells were inactivated quickly, regardless of the drying methods. The relationship between Tg and storage temperature will contribute to understanding the desiccation tolerance of bacterial cells.


Assuntos
Cronobacter sakazakii/fisiologia , Dessecação , Manipulação de Alimentos , Estresse Mecânico , Vitrificação , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos , Lactente , Fórmulas Infantis/microbiologia , Temperatura
8.
Microbiol Spectr ; 9(3): e0114221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908471

RESUMO

Novel melanoidins are produced by the Maillard reaction. Here, melanoidins with high antibacterial activity were tested by examining various combinations of reducing sugars and amino acids as reaction substrates. Twenty-two types of melanoidins were examined by combining two reducing sugars (glucose and xylose) and eleven l-isomers of amino acids (alanine, arginine, glutamine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, and valine) to confirm the effects of these melanoidins on the growth of Listeria monocytogenes at 25°C. The melanoidins produced from the combination of d-xylose with either l-phenylalanine (Xyl-Phe) or l-proline (Xyl-Pro), for which absorbance at 420 nm was 3.5 ± 0.2, completely inhibited the growth of L. monocytogenes at 25°C for 48 h. Both of the melanoidins exhibited growth inhibition of L. monocytogenes which was equivalent to the effect of nisin (350 IU/mL). The antimicrobial spectrum of both melanoidins was also investigated for 10 different species of bacteria, including both Gram-positive and Gram-negative species. While Xyl-Phe-based melanoidin successfully inhibited the growth of Bacillus cereus and Brevibacillus brevis, Xyl-Pro-based melanoidin inhibited the growth of Salmonella enterica Typhimurium. However, no clear trend in the antimicrobial spectrum of the melanoidins against different bacterial species was observed. The findings in the present study suggest that melanoidins generated from xylose with phenylalanine and/or proline could be used as potential novel alternative food preservatives derived from food ingredients to control pathogenic bacteria. IMPORTANCE Although the antimicrobial effect of melanoidins has been reported in some foods, there have been few comprehensive investigations on the antimicrobial activity of combinations of reaction substrates of the Maillard reaction. The present study comprehensively investigated the potential of various combinations of reducing sugars and amino acids. Because the melanoidins examined in this study were produced simply by heating in an autoclave at 121°C for 60 min, the targeted melanoidins can be easily produced. The melanoidins produced from combinations of xylose with either phenylalanine or proline exhibited a wide spectrum of antibiotic effects against various pathogens, including Listeria monocytogenes, Bacillus cereus, and Salmonella enterica Typhimurium. Since the antibacterial effect of the melanoidins on L. monocytogenes was equivalent to that of a nisin solution (350 IU/mL), we might expect a practical application of melanoidins as novel food preservatives.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Conservantes de Alimentos/farmacologia , Polímeros/farmacologia , Aminoácidos/metabolismo , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Brevibacillus/efeitos dos fármacos , Brevibacillus/crescimento & desenvolvimento , Microbiologia de Alimentos/métodos , Glucose/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Reação de Maillard , Testes de Sensibilidade Microbiana , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Xilose/metabolismo
9.
J Microbiol Methods ; 190: 106326, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34517040

RESUMO

The purpose is classification of stress tolerances of spoilage bacteria using Raman spectra and chemometrics. We obtained Raman spectra of six spoilage bacteria. Classification models were constructed with support vector machine and classified food-related stress tolerance with 90% accuracy, which provides bacterial characteristics specific to environment reducing food spoilage.


Assuntos
Bactérias/classificação , Técnicas de Tipagem Bacteriana/métodos , Quimiometria/métodos , Microbiologia de Alimentos , Conservantes de Alimentos/farmacologia , Análise Espectral Raman/métodos , Bactérias/efeitos dos fármacos , Inocuidade dos Alimentos , Glicina/farmacologia , Acetato de Sódio/farmacologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Máquina de Vetores de Suporte
10.
Appl Environ Microbiol ; 87(20): e0129921, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34347512

RESUMO

Understanding the dose-response relationship between ingested pathogenic bacteria and infection probability is a key factor for appropriate risk assessment of foodborne pathogens. The objectives of this study were to develop and validate a novel mechanistic dose-response model for Campylobacter jejuni and simulate the underlying mechanism of foodborne illness during digestion. Bacterial behavior in the human gastrointestinal environment, including survival at low pH in the gastric environment after meals, transition to intestines, and invasion to intestinal tissues, was described using a Bayesian statistical model based on the reported experimental results of each process while considering physical food types (liquid versus solid) and host age (young adult versus elderly). Combining the models in each process, the relationship between pathogen intake and the infection probability of C. jejuni was estimated and compared with reported epidemiological dose-response relationships. Taking food types and host age into account, the prediction range of the infection probability of C. jejuni successfully covered the reported dose-response relationships from actual C. jejuni outbreaks. According to sensitivity analysis of predicted infection probabilities, the host age factor and the food type factor have relatively higher relevance than other factors. Thus, the developed "key events dose-response framework" can derive novel information for quantitative microbiological risk assessment in addition to dose-response relationship. The framework is potentially applicable to other pathogens to quantify the dose-response relationship from experimental data obtained from digestion. IMPORTANCE Based on the mechanistic approach called the key events dose-response framework (KEDRF), an alternative to previous nonmechanistic approaches, the dose-response models for infection probability of C. jejuni were developed considering with age of people who ingest pathogen and food type. The developed predictive framework illustrates highly accurate prediction of dose (minimum difference 0.21 log CFU) for a certain infection probability compared with the previously reported dose-response relationship. In addition, the developed prediction procedure revealed that the dose-response relationship strongly depends on food type as well as host age. The implementation of the key events dose-response framework will mechanistically and logically reveal the dose-response relationship and provide useful information with quantitative microbiological risk assessment of C. jejuni on foods.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Intestinos/microbiologia , Modelos Biológicos , Adulto , Idoso , Translocação Bacteriana , Feminino , Doenças Transmitidas por Alimentos , Humanos , Concentração de Íons de Hidrogênio , Masculino , Probabilidade , Estômago/química , Estômago/microbiologia , Adulto Jovem
11.
Front Microbiol ; 12: 674364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248886

RESUMO

Conventional regression analysis using the least-squares method has been applied to describe bacterial behavior logarithmically. However, only the normal distribution is used as the error distribution in the least-squares method, and the variability and uncertainty related to bacterial behavior are not considered. In this paper, we propose Bayesian statistical modeling based on a generalized linear model (GLM) that considers variability and uncertainty while fitting the model to colony count data. We investigated the inactivation kinetic data of Bacillus simplex with an initial cell count of 105 and the growth kinetic data of Listeria monocytogenes with an initial cell count of 104. The residual of the GLM was described using a Poisson distribution for the initial cell number and inactivation process and using a negative binomial distribution for the cell number variation during growth. The model parameters could be obtained considering the uncertainty by Bayesian inference. The Bayesian GLM successfully described the results of over 50 replications of bacterial inactivation with average of initial cell numbers of 101, 102, and 103 and growth with average of initial cell numbers of 10-1, 100, and 101. The accuracy of the developed model revealed that more than 90% of the observed cell numbers except for growth with initial cell numbers of 101 were within the 95% prediction interval. In addition, parameter uncertainty could be expressed as an arbitrary probability distribution. The analysis procedures can be consistently applied to the simulation process through fitting. The Bayesian inference method based on the GLM clearly explains the variability and uncertainty in bacterial population behavior, which can serve as useful information for risk assessment related to food borne pathogens.

12.
Sci Rep ; 11(1): 10613, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012066

RESUMO

In predictive microbiology, statistical models are employed to predict bacterial population behavior in food using environmental factors such as temperature, pH, and water activity. As the amount and complexity of data increase, handling all data with high-dimensional variables becomes a difficult task. We propose a data mining approach to predict bacterial behavior using a database of microbial responses to food environments. Listeria monocytogenes, which is one of pathogens, population growth and inactivation data under 1,007 environmental conditions, including five food categories (beef, culture medium, pork, seafood, and vegetables) and temperatures ranging from 0 to 25 °C, were obtained from the ComBase database ( www.combase.cc ). We used eXtreme gradient boosting tree, a machine learning algorithm, to predict bacterial population behavior from eight explanatory variables: 'time', 'temperature', 'pH', 'water activity', 'initial cell counts', 'whether the viable count is initial cell number', and two types of categories regarding food. The root mean square error of the observed and predicted values was approximately 1.0 log CFU regardless of food category, and this suggests the possibility of predicting viable bacterial counts in various foods. The data mining approach examined here will enable the prediction of bacterial population behavior in food by identifying hidden patterns within a large amount of data.


Assuntos
Bases de Dados como Assunto , Microbiologia de Alimentos , Listeria monocytogenes/crescimento & desenvolvimento , Aprendizado de Máquina , Viabilidade Microbiana , Contagem de Colônia Microbiana , Concentração de Íons de Hidrogênio , Listeria monocytogenes/citologia , Modelos Biológicos , Temperatura
13.
Appl Environ Microbiol ; 87(15): e0091821, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34047637

RESUMO

This study was conducted to quantitatively evaluate the variability of stress resistance in different strains of Campylobacter jejuni and the uncertainty of such strain variability. We developed Bayesian statistical models with multilevel analysis to quantify variability within a strain, variability between different strains, and the uncertainty associated with these estimates. Furthermore, we measured the inactivation of 11 strains of C. jejuni in simulated gastric fluid with low pH, using the Weibullian survival model. The model was first developed for separate pH conditions and then analyzed over a range of pH levels. We found that the model parameters developed under separate pH conditions exhibited a clear dependence of survival on pH. In addition, the uncertainty of the variability between different strains could be described as the joint distribution of the model parameters. The latter model, including pH dependency, accurately predicted the number of surviving cells in individual as well as multiple strains. In conclusion, variabilities and uncertainties in inactivation could be simultaneously evaluated and interpreted via a probabilistic approach based on Bayesian theory. Such hierarchical Bayesian models could be useful for understanding individual-strain variability in quantitative microbial risk assessment. IMPORTANCE Since microbial strains vary in their growth and inactivation patterns in food materials, it is important to accurately predict these patterns for quantitative microbial risk assessment. However, most previous studies in this area have used highly resistant strains, which could lead to inaccurate predictions. Moreover, variability, including measurement errors and variability within a strain and between different strains, can contribute to predicted individual-level outcomes. Therefore, a multilevel framework is required to resolve these levels of variability and estimate their uncertainties. We developed a Bayesian predictive model for the survival of Campylobacter jejuni under simulated gastric conditions taking into account the variabilities and uncertainties. We demonstrated a high correspondence between predictions from the model and empirical measurements. The modeling procedure proposed in this study recommends a novel framework for predicting pathogen behavior, which can help improve quantitative microbial risk assessment during food production and distribution.


Assuntos
Teorema de Bayes , Campylobacter jejuni , Suco Gástrico/microbiologia , Modelos Teóricos , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Especificidade da Espécie
14.
J Microbiol Methods ; 186: 106251, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34038753

RESUMO

The concept of dielectrophoresis (DEP), which involves the movement of neutral particles by induced polarization in nonuniform electric fields, has been exploited in various biological applications. However, only a few studies have investigated the use of DEP for detecting and enumerating microorganisms in foodstuffs. Therefore, we aimed to evaluate the accuracy and efficiency of a DEP-based method for enumerating viable bacteria in three raw foods: freshly cut lettuce, chicken breast, and minced pork. The DEP separation of bacterial cells was conducted at 20 V of output voltage and 6000 to 9000 kHZ of frequency with sample conductivity of 30-70 µS/cm. The accuracy and validity of the DEP method for enumerating viable bacteria were compared with those of the conventional culture method; no significant variation was observed. We found a high correlation between the data obtained using DEP and the conventional aerobic plate count culture method, with a high coefficient of determination (R2 > 0.90) regardless of the food product; the difference in cell count data between both methods was within 1.0 log CFU/mL. Moreover, we evaluated the efficiency of the DEP method for enumerating bacterial cells in chicken breasts subjected to either freezing or heat treatment. After thermal treatment at 55 °C and 60 °C, the viable cell counts determined via the DEP method were found to be lower than those obtained using the conventional culture method, which implies that the DEP method may not be suitable for the direct detection of injured cells. In addition to its high accuracy and efficiency, the DEP method enables the determination of viable cell counts within 30 min, compared to 48 h required for the conventional culture method. In conclusion, the DEP method may be a potential alternative tool for rapid determination of viable bacteria in a variety of foodstuffs.


Assuntos
Bactérias Aeróbias/isolamento & purificação , Eletroforese/métodos , Contaminação de Alimentos/análise , Alimentos Crus/microbiologia , Verduras/microbiologia , Animais , Bactérias Aeróbias/química , Galinhas , Eletroforese/instrumentação , Lactuca/microbiologia , Carne/microbiologia
15.
J Theor Biol ; 525: 110758, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-33984354

RESUMO

Traditional predictive microbiology is not suited for cell growth predictions for low-level contamination, where individual cell heterogeneity becomes apparent. Accordingly, we simulated a stochastic birth process of bacteria population using kinetic parameters. We predicted the variation in behavior of Salmonella enterica serovar Typhimurium cells at low inoculum density. The modeled cells were grown in tryptic soy broth at 25 °C. Kinetic growth parameters were first determined empirically for an initial cell number of 104 cells. Monte Carlo simulation based on the growth kinetics and Poisson distribution for different initial cell numbers predicted the results of 50 replicate growth experiments with the initial cell number of 1, 10, and 64 cells. Indeed, measured behavior of 85% cells fell within the 95% prediction area of the simulation. The calculations link the kinetic and stochastic birth process with Poisson distribution. The developed model can be used to calculate the probability distribution of population size for exposure assessment and for the evaluation of a probability that a pathogen would exceed critical contamination level during food storage.


Assuntos
Salmonella enterica , Contagem de Colônia Microbiana , Contaminação de Alimentos , Microbiologia de Alimentos , Cinética , Método de Monte Carlo , Distribuição de Poisson , Processos Estocásticos
16.
PLoS One ; 16(3): e0248769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33739969

RESUMO

The visual perception of freshness is an important factor considered by consumers in the purchase of fruits and vegetables. However, panel testing when evaluating food products is time consuming and expensive. Herein, the ability of an image processing-based, nondestructive technique to classify spinach freshness was evaluated. Images of spinach leaves were taken using a smartphone camera after different storage periods. Twelve sensory panels ranked spinach freshness into one of four levels using these images. The rounded value of the average from all twelve panel evaluations was set as the true label. The spinach image was removed from the background, and then converted into a gray scale and CIE-Lab color space (L*a*b*) and Hue, Saturation and Value (HSV). The mean value, minimum value, and standard deviation of each component of color in spinach leaf were extracted as color features. Local features were extracted using the bag-of-words of key points from Oriented FAST (Features from Accelerated Segment Test) and Rotated BRIEF (Binary Robust Independent Elementary Features). The feature combinations selected from the spinach images were used to train machine learning models to recognize freshness levels. Correlation analysis between the extracted features and the sensory evaluation score showed a positive correlation (0.5 < r < 0.6) for four color features, and a negative correlation (‒0.6 < r < ‒0.5) for six clusters in the local features. The support vector machine classifier and artificial neural network algorithm successfully classified spinach samples with overall accuracy 70% in four-class, 77% in three-class and 84% in two-class, which was similar to that of the individual panel evaluations. Our findings indicate that a model using support vector machine classifiers and artificial neural networks has the potential to replace freshness evaluations currently performed by non-trained panels.


Assuntos
Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Sensação/fisiologia , Spinacia oleracea/fisiologia , Algoritmos , Modelos Teóricos , Redes Neurais de Computação , Máquina de Vetores de Suporte
17.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33067190

RESUMO

Current approaches used for dose-response modeling of low-dose exposures of pathogens rely on assumptions and extrapolations. These models are important for quantitative microbial risk assessment of food. A mechanistic framework has been advocated as an alternative approach for evaluating dose-response relationships. The objectives of this study were to investigate the invasion behavior of Campylobacter jejuni, which could arise as a foodborne illness even if there are low counts of pathogens, into Caco-2 cells as a model of intestinal cells and to develop a mathematical model for invading cell counts to reveal a part of the infection dose-response mechanism. Monolayer-cultured Caco-2 cells and various concentrations of C. jejuni in culture were cocultured for up to 12 h. The numbers of C. jejuni bacteria invading Caco-2 cells were determined after coculture for different time periods. There appeared to be a maximum limit to the invading bacterial counts, which showed an asymptotic exponential increase. The invading bacterial counts were higher with higher exposure concentrations (maximum, 5.0 log CFU/cm2) than with lower exposure concentrations (minimum, 0.6 log CFU/cm2). In contrast, the ratio of invading bacteria (number of invading bacteria divided by the total number of bacteria exposed) showed a similar trend regardless of the exposure concentration. Invasion of C. jejuni into intestinal cells was successfully demonstrated and described by the developed differential equation model with Bayesian inference. The model accuracy showed that the 99% prediction band covered more than 97% of the observed values. These findings provide important information on mechanistic pathogen dose-response relationships and an alternative approach for dose-response modeling.IMPORTANCE One of the infection processes of C. jejuni, the invasion behavior of the bacteria in intestinal epithelial cells, was revealed, and a mathematical model for prediction of the cell-invading pathogen counts was developed for the purpose of providing part of a dose-response model for C. jejuni based on the infection mechanism. The developed predictive model showed a high accuracy of more than 97% and successfully described the C. jejuni invading counts. The bacterial invasion predictive model of this study will be essential for the development of a dose-response model for C. jejuni based on the infection mechanism.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/fisiologia , Enteropatias/microbiologia , Intestino Delgado/microbiologia , Teorema de Bayes , Células CACO-2 , Células Epiteliais/microbiologia , Humanos
18.
Front Microbiol ; 11: 985, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508792

RESUMO

The objective of this study was to separately describe the fitting uncertainty and the variability of individual cell in bacterial survival kinetics during isothermal and non-isothermal thermal processing. The model describing bacterial survival behavior and its uncertainties and variabilities during non-isothermal inactivation was developed from survival kinetic data for Bacillus simplex spores under fifteen isothermal conditions. The fitting uncertainties in the parameters used in the primary Weibull model was described by using the bootstrap method. The variability of individual cells in thermotolerance and the true randomness in the number of dead cells were described by using the Markov chain Monte Carlo (MCMC) method. A second-order Monte Carlo (2DMC) model was developed by combining both the uncertainties and variabilities. The 2DMC model was compared with reduction behavior under three non-isothermal profiles for model validation. The bacterial death estimations were validated using experimentally observed surviving bacterial count data. The fitting uncertainties in the primary Weibull model parameters, the individual thermotolerance heterogeneity, and the true randomness of inactivated spore counts were successfully described under all the iso-thermal conditions. Furthermore, the 2DMC model successfully described the variances in the surviving bacterial counts during thermal inactivation for all three non-isothermal profiles. As a template for risk-based process designs, the proposed 2DMC simulation approach, which considers both uncertainty and variability, can facilitate the selection of appropriate thermal processing conditions ensuring both food safety and quality.

19.
Food Microbiol ; 91: 103508, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32539982

RESUMO

Kinetic models performing point estimation are effective in predicting the bacterial behavior. However, the large variation of bacterial behavior appearing in a small number of cells, i.e. equal or less than 102 cells, cannot be expressed by point estimation. We aimed to predict the variation of Escherichia coli O157:H7 behavior during inactivation in acidified tryptone soy broth (pH3.0) through Monte Carlo simulation and evaluated the accuracy of the developed model. Weibullian fitted parameters were estimated from the kinetic survival data of E. coli O157:H7 with an initial cell number of 105. A Monte Carlo simulation (100 replication) based on the obtained Weibullian parameters and the Poisson distribution of initial cell numbers successfully predicted the results of 50 replications of bacterial inactivation with initial cell numbers of 101, 102, and 103 cells. The accuracy of the simulation revealed that more than 83% of the observed survivors were within predicted range in all condition. 90% of the distribution in survivors with initial cells less than 100 is equivalent to a Poisson distribution. This calculation transforms the traditional microbial kinetic model into probabilistic model, which can handle bacteria number as discrete probability distribution. The probabilistic approach would utilize traditional kinetic model towards exposure assessment.


Assuntos
Escherichia coli O157/fisiologia , Microbiologia de Alimentos/métodos , Modelos Estatísticos , Contagem de Colônia Microbiana , Simulação por Computador , Meios de Cultura/química , Escherichia coli O157/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Cinética , Viabilidade Microbiana , Método de Monte Carlo , Distribuição de Poisson , Processos Estocásticos
20.
Front Microbiol ; 10: 2239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681187

RESUMO

Uncertainty analysis is the process of identifying limitations in scientific knowledge and evaluating their implications for scientific conclusions. In the context of microbial risk assessment, the uncertainty in the predicted microbial behavior can be an important component of the overall uncertainty. Conventional deterministic modeling approaches which provide point estimates of the pathogen's levels cannot quantify the uncertainty around the predictions. The objective of this study was to use Bayesian statistical modeling for describing uncertainty in predicted microbial thermal inactivation of Salmonella enterica Typhimurium DT104. A set of thermal inactivation data in broth with water activity adjusted to 0.75 at 9 different temperature conditions obtained from the ComBase database (www.combase.cc) was used. A log-linear microbial inactivation was used as a primary model while for secondary modeling, a linear relation between the logarithm of inactivation rate and temperature was assumed. For comparison, data were fitted with a two-step and a global Bayesian regression. Posterior distributions of model's parameters were used to predict Salmonella thermal inactivation. The combination of the joint posterior distributions of model's parameters allowed the prediction of cell density over time, total reduction time and inactivation rate as probability distributions at different time and temperature conditions. For example, for the time required to eliminate a Salmonella population of about 107 CFU/ml at 65°C, the model predicted a time distribution with a median of 0.40 min and 5th and 95th percentiles of 0.24 and 0.60 min, respectively. The validation of the model showed that it can describe successfully uncertainty in predicted thermal inactivation with most observed data being within the 95% prediction intervals of the model. The global regression approach resulted in less uncertain predictions compared to the two-step regression. The developed model could be used to quantify uncertainty in thermal inactivation in risk-based processing design as well as in risk assessment studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA