Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Synchrotron Radiat ; 29(Pt 3): 602-614, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35510993

RESUMO

Serial crystallography of membrane proteins often employs high-viscosity injectors (HVIs) to deliver micrometre-sized crystals to the X-ray beam. Typically, the carrier medium is a lipidic cubic phase (LCP) media, which can also be used to nucleate and grow the crystals. However, despite the fact that the LCP is widely used with HVIs, the potential impact of the injection process on the LCP structure has not been reported and hence is not yet well understood. The self-assembled structure of the LCP can be affected by pressure, dehydration and temperature changes, all of which occur during continuous flow injection. These changes to the LCP structure may in turn impact the results of X-ray diffraction measurements from membrane protein crystals. To investigate the influence of HVIs on the structure of the LCP we conducted a study of the phase changes in monoolein/water and monoolein/buffer mixtures during continuous flow injection, at both atmospheric pressure and under vacuum. The reservoir pressure in the HVI was tracked to determine if there is any correlation with the phase behaviour of the LCP. The results indicated that, even though the reservoir pressure underwent (at times) significant variation, this did not appear to correlate with observed phase changes in the sample stream or correspond to shifts in the LCP lattice parameter. During vacuum injection, there was a three-way coexistence of the gyroid cubic phase, diamond cubic phase and lamellar phase. During injection at atmospheric pressure, the coexistence of a cubic phase and lamellar phase in the monoolein/water mixtures was also observed. The degree to which the lamellar phase is formed was found to be strongly dependent on the co-flowing gas conditions used to stabilize the LCP stream. A combination of laboratory-based optical polarization microscopy and simulation studies was used to investigate these observations.


Assuntos
Glicerídeos , Lipídeos , Glicerídeos/química , Proteínas de Membrana/química , Viscosidade , Água/química , Difração de Raios X
2.
J Colloid Interface Sci ; 611: 588-598, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34973655

RESUMO

Continuous flow injection is a key technology for serial crystallography measurements of protein crystals suspended in the lipidic cubic phase (LCP). To date, there has been little discussion in the literature regarding the impact of the injection process itself on the structure of the lipidic phase. This is despite the fact that the phase of the injection matrix is critical for the flow properties of the stream and potentially for sample stability. Here we report small-angle X-ray scattering measurements of a monoolein:water mixture during continuous delivery using a high viscosity injector. We observe both an alignment and modification of the LCP as a direct result of the injection process. The orientation of the cubic lattice with respect to the beam was estimated based on the anisotropy of the diffraction pattern and does not correspond to a single low order zone axis. The solvent fraction was also observed to impact the stability of the cubic phase during injection. In addition, depending on the distance traveled by the lipid after exiting the needle, the phase is observed to transition from a pure diamond phase (Pn3m) to a mixture containing both gyriod (Ia3d) and lamellar (Lα) phases. Finite element modelling of the observed phase behaviour during injection indicates that the pressure exerted on the lipid stream during extrusion accounts for the variations in the phase composition of the monoolein:water mixture.


Assuntos
Lipídeos , Água , Transição de Fase , Difração de Raios X
3.
PLoS One ; 15(8): e0238065, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32853223

RESUMO

BACKGROUND: Numerous predictive models in the literature stratify patients by risk of mortality and readmission. Few prediction models have been developed to optimize impact while sustaining sufficient performance. OBJECTIVE: We aimed to derive models for hospital mortality, 180-day mortality and 30-day readmission, implement these models within our electronic health record and prospectively validate these models for use across an entire health system. MATERIALS & METHODS: We developed, integrated into our electronic health record and prospectively validated three predictive models using logistic regression from data collected from patients 18 to 99 years old who had an inpatient or observation admission at NorthShore University HealthSystem, a four-hospital integrated system in the United States, from January 2012 to September 2018. We analyzed the area under the receiver operating characteristic curve (AUC) for model performance. RESULTS: Models were derived and validated at three time points: retrospective, prospective at discharge, and prospective at 4 hours after presentation. AUCs of hospital mortality were 0.91, 0.89 and 0.77, respectively. AUCs for 30-day readmission were 0.71, 0.71 and 0.69, respectively. 180-day mortality models were only retrospectively validated with an AUC of 0.85. DISCUSSION: We were able to retain good model performance while optimizing potential model impact by also valuing model derivation efficiency, usability, sensitivity, generalizability and ability to prescribe timely interventions to reduce underlying risk. Measuring model impact by tying prediction models to interventions that are then rapidly tested will establish a path for meaningful clinical improvement and implementation.


Assuntos
Registros Eletrônicos de Saúde , Mortalidade Hospitalar , Modelos Estatísticos , Readmissão do Paciente/estatística & dados numéricos , Idoso , Feminino , Humanos , Masculino , Medição de Risco
4.
Cell Rep ; 23(9): 2795-2804, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29847807

RESUMO

Actin assembly is important for cell motility. The ability of actin subunits to join or leave filaments via the barbed end is critical to actin dynamics. Capping protein (CP) binds to barbed ends to prevent subunit gain and loss and is regulated by proteins that include V-1 and CARMIL. V-1 inhibits CP by sterically blocking one binding site for actin. CARMILs bind at a distal site and decrease the affinity of CP for actin, suggested to be caused by conformational changes. We used hydrogen-deuterium exchange with mass spectrometry (HDX-MS) to probe changes in structural dynamics induced by V-1 and CARMIL binding to CP. V-1 and CARMIL induce changes in both proteins' binding sites on the surface of CP, along with a set of internal residues. Both also affect the conformation of CP's ßß subunit "tentacle," a second distal actin-binding site. Concerted regulation of actin assembly by CP occurs through allosteric couplings between CP modulator and actin binding sites.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Medição da Troca de Deutério , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Regulação Alostérica , Animais , Camundongos , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Solventes
5.
Protein Sci ; 13(7): 1942-7, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15169953

RESUMO

The crystal structure of full-length homotetrameric single-stranded DNA (ssDNA)-binding protein from Escherichia coli (SSB) has been determined to 3.3 A resolution and reveals that the entire C-terminal domain is disordered even in the presence of ssDNA. To our knowledge, this is the first experimental evidence that the C-terminal domain of SSB may be inherently disordered. The N-terminal DNA-binding domain of the protein is well ordered and is virtually indistinguishable from the previously determined structure of the chymotryptic fragment of SSB (SSBc) in complex with ssDNA. The absence of observable interactions with the core protein and the crystal packing of SSB together suggest that the disordered C-terminal domains likely extend laterally away from the DNA- binding domains, which may facilitate interactions with components of the replication machinery in vivo. The structure also reveals the conservation of molecular contacts between successive tetramers mediated by the L(45) loops as seen in two other crystal forms of SSBc, suggesting a possible functional relevance of this interaction.


Assuntos
DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Cristalografia por Raios X , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA