Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 14(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785920

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting a growing number of elderly people. In order to improve the early and differential diagnosis of AD, better biomarkers are needed. Glycosylation is a protein post-translational modification that is modulated in the course of many diseases, including neurodegeneration. Aiming to improve AD diagnosis and differential diagnosis through glycan analytics methods, we report the glycoprotein glycome of cerebrospinal fluid (CSF) isolated from a total study cohort of 262 subjects. The study cohort consisted of patients with AD, healthy controls and patients suffering from other types of dementia. CSF free-glycans were also isolated and analyzed in this study, and the results reported for the first time the presence of 19 free glycans in this body fluid. The free-glycans consisted of complete or truncated N-/O-glycans as well as free monosaccharides. The free-glycans Hex1 and HexNAc1Hex1Neu5Ac1 were able to discriminate AD from controls and from patients suffering from other types of dementia. Regarding CSF N-glycosylation, high proportions of high-mannose, biantennary bisecting core-fucosylated N-glycans were found, whereby only about 20% of the N-glycans were sialylated. O-Glycans and free-glycan fragments were less sialylated in AD patients than in controls. To conclude, this comprehensive study revealed for the first time the biomarker potential of free glycans for the differential diagnosis of AD.


Assuntos
Doença de Alzheimer , Biomarcadores , Polissacarídeos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Humanos , Biomarcadores/líquido cefalorraquidiano , Polissacarídeos/líquido cefalorraquidiano , Polissacarídeos/química , Masculino , Feminino , Idoso , Glicosilação , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Glicoproteínas/líquido cefalorraquidiano , Estudos de Casos e Controles
2.
Nat Biomed Eng ; 8(3): 233-247, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37474612

RESUMO

Protein glycosylation, a complex and heterogeneous post-translational modification that is frequently dysregulated in disease, has been difficult to analyse at scale. Here we report a data-independent acquisition technique for the large-scale mass-spectrometric quantification of glycopeptides in plasma samples. The technique, which we named 'OxoScan-MS', identifies oxonium ions as glycopeptide fragments and exploits a sliding-quadrupole dimension to generate comprehensive and untargeted oxonium ion maps of precursor masses assigned to fragment ions from non-enriched plasma samples. By applying OxoScan-MS to quantify 1,002 glycopeptide features in the plasma glycoproteomes from patients with COVID-19 and healthy controls, we found that severe COVID-19 induces differential glycosylation in IgA, haptoglobin, transferrin and other disease-relevant plasma glycoproteins. OxoScan-MS may allow for the quantitative mapping of glycoproteomes at the scale of hundreds to thousands of samples.


Assuntos
COVID-19 , Glicopeptídeos , Humanos , Espectrometria de Massas , Glicosilação , Glicopeptídeos/análise , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Íons
4.
Biology (Basel) ; 11(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35453706

RESUMO

Glycosaminoglycans (GAGs) are considered to be the most difficult type of glycoconjugates to analyze as they are constituted of linear long polysaccharidic chains having molecular weights reaching up to several million daltons. Bottom-up analysis of glycosaminoglycans from biological samples is a long and work-extensive procedure due to the many preparation steps involved. In addition, so far, only few research articles have been dedicated to the analysis of GAGs by means of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) because their intact ionization can be problematic due to the presence of labile sulfate groups. In this work, we had the aim of exploring the sulfation pattern of monosulfated chondroitin/dermatan sulfate (CS/DS) disaccharides in human tissue samples because they represent the most abundant form of sulfation in disaccharides. We present here an optimized strategy to analyze on-target derivatized CS/DS disaccharides via MALDI-TOF-MS using a fast workflow that does not require any purification after enzymatic cleavage. For the first time, we show that MALDI-TOF/TOF experiments allow for discrimination between monosulfated CS disaccharide isomers via specific fragments corresponding to glycosidic linkages and to cross-ring cleavages. This proof of concept is illustrated via the analysis of CS/DS disaccharides of atherosclerotic lesions of different histological origins, in which we were able to identify their monosulfation patterns.

5.
Front Mol Biosci ; 8: 673044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124155

RESUMO

Cardiovascular disease is one of the leading causes of death in developed countries. Because the incidence increases exponentially in the aging population, aging is a major risk factor for cardiovascular disease. Cardiac hypertrophy, fibrosis and inflammation are typical hallmarks of the aged heart. The molecular mechanisms, however, are poorly understood. Because glycosylation is one of the most common post-translational protein modifications and can affect biological properties and functions of proteins, we here provide the first analysis of the cardiac glycoproteome of mice at different ages. Western blot as well as MALDI-TOF based glycome analysis suggest that high-mannose N-glycans increase with age. In agreement, we found an age-related regulation of GMPPB, the enzyme, which facilitates the supply of the sugar-donor GDP-mannose. Glycoprotein pull-downs from heart lysates of young, middle-aged and old mice in combination with quantitative mass spectrometry bolster widespread alterations of the cardiac glycoproteome. Major hits are glycoproteins related to the extracellular matrix and Ca2+-binding proteins of the endoplasmic reticulum. We propose that changes in the heart glycoproteome likely contribute to the age-related functional decline of the cardiovascular system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA