Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
NMR Biomed ; 35(4): e4307, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-32289884

RESUMO

Remodeling of tissue microvasculature commonly promotes neoplastic growth; however, there is no imaging modality in oncology yet that noninvasively quantifies microvascular changes in clinical routine. Although blood capillaries cannot be resolved in typical magnetic resonance imaging (MRI) measurements, their geometry and distribution influence the integral nuclear magnetic resonance (NMR) signal from each macroscopic MRI voxel. We have numerically simulated the expected transverse relaxation in NMR voxels with different dimensions based on the realistic microvasculature in healthy and tumor-bearing mouse brains (U87 and GL261 glioblastoma). The 3D capillary structure in entire, undissected brains was acquired using light sheet fluorescence microscopy to produce large datasets of the highly resolved cerebrovasculature. Using this data, we trained support vector machines to classify virtual NMR voxels with different dimensions based on the simulated spin dephasing accountable to field inhomogeneities caused by the underlying vasculature. In prediction tests with previously blinded virtual voxels from healthy brain tissue and GL261 tumors, stable classification accuracies above 95% were reached. Our results indicate that high classification accuracies can be stably attained with achievable training set sizes and that larger MRI voxels facilitated increasingly successful classifications, even with small training datasets. We were able to prove that, theoretically, the transverse relaxation process can be harnessed to learn endogenous contrasts for single voxel tissue type classifications on tailored MRI acquisitions. If translatable to experimental MRI, this may augment diagnostic imaging in oncology with automated voxel-by-voxel signal interpretation to detect vascular pathologies.


Assuntos
Neoplasias Encefálicas , Máquina de Vetores de Suporte , Animais , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Camundongos
2.
J Cereb Blood Flow Metab ; 41(7): 1536-1546, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33043767

RESUMO

Three-dimensional assessment of optically cleared, entire organs and organisms has recently become possible by tissue clearing and selective plane illumination microscopy ("ultramicroscopy"). Resulting datasets can be highly complex, encompass over a thousand images with millions of objects and data of several gigabytes per acquisition. This constitutes a major challenge for quantitative analysis. We have developed post-processing tools to quantify millions of microvessels and their distribution in three-dimensional datasets from ultramicroscopy and demonstrate the capabilities of our pipeline within entire mouse brains and embryos. Using our developed acquisition, segmentation, and analysis platform, we quantify physiological vascular networks in development and the healthy brain. We compare various geometric vessel parameters (e.g. vessel density, radius, tortuosity) in the embryonic spinal cord and brain as well as in different brain regions (basal ganglia, corpus callosum, cortex). White matter tract structures (corpus callosum, spinal cord) showed lower microvascular branch densities and longer vessel branch length compared to grey matter (cortex, basal ganglia). Furthermore, we assess tumor neoangiogenesis in a mouse glioma model to compare tumor core and tumor border. The developed methodology allows rapid quantification of three-dimensional datasets by semi-automated segmentation of fluorescently labeled objects with conventional computer hardware. Our approach can aid preclinical investigations and paves the way towards "quantitative ultramicroscopy".


Assuntos
Encéfalo/irrigação sanguínea , Glioma/patologia , Microscopia/métodos , Microvasos/patologia , Neovascularização Patológica/patologia , Animais , Glioma/diagnóstico por imagem , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microvasos/diagnóstico por imagem , Neovascularização Patológica/diagnóstico por imagem
3.
Front Pharmacol ; 11: 686, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528281

RESUMO

Antibody-based therapies hold promise for a safe and efficient treatment of cancer. The identification of target tumor cells through a specific antigen enriched on their surface and the subsequent delivery of the therapeutic agent only to those cells requires, besides the efficacy of the therapeutic agent itself, the identification of an antigen enriched on the surface of tumor cells, the generation of high affinity antibodies against that antigen. We have generated single-domain antibodies (nanobodies) against the voltage-gated potassium channel Kv10.1, which outside of the brain is detectable almost exclusively in tumor cells. The nanobody with highest affinity was fused to an improved form of the tumor necrosis factor-related apoptosis inducing ligand TRAIL, to target this cytokine to the surface of tumor cells. The resulting construct, VHH-D9-scTRAIL, shows rapid and strong apoptosis induction in different tumor models in cell culture. The construct combines two sources of specificity, the expression of the antigen restricted to tumor cells and the tumor selectivity of TRAIL. Such specificity combined with the high affinity obtained through nanobodies make the novel agent a promising concept for cancer therapy.

4.
J Theor Biol ; 494: 110230, 2020 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142806

RESUMO

Microvascular proliferation in glioblastoma multiforme is a biological key mechanism to facilitate tumor growth and infiltration and a main target for treatment interventions. The vascular architecture can be obtained by Single Plane Illumination Microscopy (SPIM) to evaluate vascular heterogeneity in tumorous tissue. We make use of the Gibbs point field model to quantify the order of regularity in capillary distributions found in the U87 glioblastoma model in a murine model and to compare tumorous and healthy brain tissue. A single model parameter Γ was assigned that is linked to tissue-specific vascular topology through Monte-Carlo simulations. Distributions of the model parameter Γ differ significantly between glioblastoma tissue with mean 〈ΓG〉=2.1±0.4, as compared to healthy brain tissue with mean 〈ΓH〉=4.9±0.4, suggesting that the average Γ-value allows for tissue differentiation. These results may be used for diagnostic magnetic resonance imaging, where it has been shown recently that Γ is linked to tissue-inherent relaxation parameters.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Microvasos , Modelos Biológicos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/diagnóstico por imagem , Modelos Animais de Doenças , Glioblastoma/irrigação sanguínea , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos , Microvasos/patologia
5.
Sci Rep ; 9(1): 11757, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409816

RESUMO

Glioblastoma multiforme alters healthy tissue vasculature by inducing angiogenesis and vascular remodeling. To fully comprehend the structural and functional properties of the resulting vascular network, it needs to be studied collectively by considering both geometric and topological properties. Utilizing Single Plane Illumination Microscopy (SPIM), the detailed capillary structure in entire healthy and tumor-bearing mouse brains could be resolved in three dimensions. At the scale of the smallest capillaries, the entire vascular systems of bulk U87- and GL261-glioblastoma xenografts, their respective cores, and healthy brain hemispheres were modeled as complex networks and quantified with fundamental topological measures. All individual vessel segments were further quantified geometrically and modular clusters were uncovered and characterized as meta-networks, facilitating an analysis of large-scale connectivity. An inclusive comparison of large tissue sections revealed that geometric properties of individual vessels were altered in glioblastoma in a relatively subtle way, with high intra- and inter-tumor heterogeneity, compared to the impact on the vessel connectivity. A network topology analysis revealed a clear decomposition of large modular structures and hierarchical network organization, while preserving most fundamental topological classifications, in both tumor models with distinct growth patterns. These results augment our understanding of cerebrovascular networks and offer a topological assessment of glioma-induced vascular remodeling. The findings may help understand the emergence of hypoxia and necrosis, and prove valuable for therapeutic interventions such as radiation or antiangiogenic therapy.


Assuntos
Neoplasias Encefálicas/patologia , Circulação Cerebrovascular , Conectoma , Glioblastoma/patologia , Animais , Neoplasias Encefálicas/irrigação sanguínea , Feminino , Glioblastoma/irrigação sanguínea , Xenoenxertos , Humanos , Masculino , Camundongos
6.
Acta Neuropathol ; 138(2): 275-293, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31062076

RESUMO

Glioblastomas strongly invade the brain by infiltrating into the white matter along myelinated nerve fiber tracts even though the myelin protein Nogo-A prevents cell migration by activating inhibitory RhoA signaling. The mechanisms behind this long-known phenomenon remained elusive so far, precluding a targeted therapeutic intervention. This study demonstrates that the prevalent activation of AKT in gliomas increases the ER protein-folding capacity and enables tumor cells to utilize a side effect of RhoA activation: the perturbation of the IRE1α-mediated decay of SPARC mRNA. Once translation is initiated, glioblastoma cells rapidly secrete SPARC to block Nogo-A from inhibiting migration via RhoA. By advanced ultramicroscopy for studying single-cell invasion in whole, undissected mouse brains, we show that gliomas require SPARC for invading into white matter structures. SPARC depletion reduces tumor dissemination that significantly prolongs survival and improves response to cytostatic therapy. Our finding of a novel RhoA-IRE1 axis provides a druggable target for interfering with SPARC production and underscores its therapeutic value.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Proteínas de Neoplasias/fisiologia , Proteínas Nogo/biossíntese , Osteonectina/biossíntese , Biossíntese de Proteínas , Substância Branca/patologia , Proteína rhoA de Ligação ao GTP/fisiologia , Animais , Ligação Competitiva , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Invasividade Neoplásica , Proteínas Nogo/genética , Osteonectina/genética , Domínios Proteicos , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato/fisiologia , Células Tumorais Cultivadas , Substância Branca/metabolismo
7.
Int J Cancer ; 143(5): 1176-1187, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29582423

RESUMO

The Peroxiredoxin 1 (PRDX1) gene maps to chromosome arm 1p and is hemizygously deleted and epigenetically silenced in isocitrate dehydrogenase 1 or 2 (IDH)-mutant and 1p/19q-codeleted oligodendroglial tumors. In contrast, IDH-wildtype astrocytic gliomas including glioblastomas mostly lack epigenetic silencing and express PRDX1 protein. In our study, we investigated how PRDX1 contributes to the infiltrative growth of IDH-wildtype gliomas. Focusing on p38α-dependent pathways, we analyzed clinical data from 133 patients of the NOA-04 trial cohort to look for differences in the gene expression profiles of gliomas with wildtype or mutant IDH. Biochemical interaction studies as well as in vitro and ex vivo migration studies were used to establish a biological role of PRDX1 in maintaining pathway activity. Whole-brain high-resolution ultramicroscopy and survival analyses of pre-clinical mouse models for IDH-wildtype gliomas were then used for in vivo confirmation. Based on clinical data, we found that the absence of PRDX1 is associated with changes in the expression of MET/HGF signaling components. PRDX1 forms a heterodimer with p38α mitogen-activated protein kinase 14 (MAPK14), stabilizing phospho-p38α in glioma cells. This process amplifies hepatocyte growth factor (HGF)-mediated signaling and stimulates actin cytoskeleton dynamics that promote glioma cell migration. Whole-brain high-resolution ultramicroscopy confirms these findings, indicating that PRDX1 promotes glioma brain invasion in vivo. Finally, reduced expression of PRDX1 increased survival in mouse glioma models. Thus, our preclinical findings suggest that PRDX1 expression levels may serve as a molecular marker for patients who could benefit from targeted inhibition of MET/HGF signaling.


Assuntos
Glioma/patologia , Isocitrato Desidrogenase/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Mutação , Peroxirredoxinas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Movimento Celular , Proliferação de Células , Seguimentos , Glioma/genética , Glioma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Proteína Quinase 14 Ativada por Mitógeno/genética , Invasividade Neoplásica , Peroxirredoxinas/genética , Prognóstico , Proteínas Proto-Oncogênicas c-met/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Front Neurosci ; 12: 1004, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30686972

RESUMO

Diffuse tumor infiltration into the adjacent parenchyma is an effective dissemination mechanism of brain tumors. We have previously developed correlated high field magnetic resonance imaging and ultramicroscopy (MR-UM) to study neonangiogenesis in a glioma model. In the present study we used MR-UM to investigate tumor infiltration and neoangiogenesis in a translational approach. We compare infiltration and neoangiogenesis patterns in four brain tumor models and the human disease: whereas the U87MG glioma model resembles brain metastases with an encapsulated growth and extensive neoangiogenesis, S24 experimental gliomas mimic IDH1 wildtype glioblastomas, exhibiting infiltration into the adjacent parenchyma and along white matter tracts to the contralateral hemisphere. MR-UM resolves tumor infiltration and neoangiogenesis longitudinally based on the expression of fluorescent proteins, intravital dyes or endogenous contrasts. Our study demonstrates the huge morphological diversity of brain tumor models regarding their infiltrative and neoangiogenic capacities and further establishes MR-UM as a platform for translational neuroimaging.

9.
Eur Radiol ; 28(3): 1149-1156, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28986695

RESUMO

OBJECTIVES: Magnetic resonance imaging (MRI) is regarded as a non-harming and non-invasive imaging modality with high tissue contrast and almost no side effects. Compared to other cross-sectional imaging modalities, MRI does not use ionising radiation. Recently, however, strong magnetic fields as applied in clinical MRI scanners have been suspected to induce DNA double-strand breaks in human lymphocytes. METHODS: In this study we investigated the impact of 3-T cardiac MRI examinations on the induction of DNA double-strand breaks in peripheral mononuclear cells by γH2AX staining and flow cytometry analysis. The study cohort consisted of 73 healthy non-smoking volunteers with 36 volunteers undergoing CMRI and 37 controls without intervention. Differences between the two cohorts were analysed by a mixed linear model with repeated measures. RESULTS: Both cohorts showed a significant increase in the γH2AX signal from baseline to post-procedure of 6.7 % (SD 7.18 %) and 7.8 % (SD 6.61 %), respectively. However, the difference between the two groups was not significant. CONCLUSION: Based on our study, γH2AX flow cytometry shows no evidence that 3-T MRI examinations as used in cardiac scans impair DNA integrity in peripheral mononuclear cells. KEY POINTS: • No evidence for DNA double-strand breaks after cardiac MRI. • Prospective study underlines safe use of MRI with regard to DNA damage. • Controlled trial involving both genders investigating DNA DSBs after 3-T MRI.


Assuntos
Quebras de DNA de Cadeia Dupla , Leucócitos Mononucleares/metabolismo , Imageamento por Ressonância Magnética/métodos , DNA , Dano ao DNA , Feminino , Citometria de Fluxo/métodos , Coração/diagnóstico por imagem , Histonas/metabolismo , Humanos , Linfócitos/metabolismo , Masculino , Estudos Prospectivos , Distribuição Aleatória
10.
Proc Natl Acad Sci U S A ; 113(46): 13227-13232, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799546

RESUMO

Innate immune cells play a key role in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Current clinical imaging is restricted to visualizing secondary effects of inflammation, such as gliosis and blood-brain barrier disruption. Advanced molecular imaging, such as iron oxide nanoparticle imaging, can allow direct imaging of cellular and molecular activity, but the exact cell types that phagocytose nanoparticles in vivo and how phagocytic activity relates to disease severity is not well understood. In this study we used MRI to map inflammatory infiltrates using high-field MRI and fluorescently labeled cross-linked iron oxide nanoparticles for cell tracking. We confirmed nanoparticle uptake and MR detectability ex vivo. Using in vivo MRI, we identified extensive nanoparticle signal in the cerebellar white matter and circumscribed cortical gray matter lesions that developed during the disease course (4.6-fold increase of nanoparticle accumulation in EAE compared with healthy controls, P < 0.001). Nanoparticles showed good cellular specificity for innate immune cells in vivo, labeling activated microglia, infiltrating macrophages, and neutrophils, whereas there was only sparse uptake by adaptive immune cells. Importantly, nanoparticle signal correlated better with clinical disease than conventional gadolinium (Gd) imaging (r, 0.83 for nanoparticles vs. 0.71 for Gd-imaging, P < 0.001). We validated our approach using the Food and Drug Administration-approved iron oxide nanoparticle ferumoxytol. Our results show that noninvasive molecular imaging of innate immune responses can serve as an imaging biomarker of disease activity in autoimmune-mediated neuroinflammation with potential clinical applications in a wide range of inflammatory diseases.


Assuntos
Encefalomielite Autoimune Experimental/diagnóstico por imagem , Nanopartículas de Magnetita/administração & dosagem , Esclerose Múltipla/diagnóstico por imagem , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Imunidade Inata , Macrófagos/imunologia , Imageamento por Ressonância Magnética , Camundongos , Microglia/imunologia , Esclerose Múltipla/imunologia , Fagocitose , Índice de Gravidade de Doença
11.
Sci Rep ; 6: 21834, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26912069

RESUMO

The detection of tumours in an early phase of tumour development in combination with the knowledge of expression of tumour markers such as epidermal growth factor receptor (EGFR) is an important prerequisite for clinical decisions. In this study we applied the anti-EGFR nanobody (99m)Tc-D10 for visualizing small tumour lesions with volumes below 100 mm(3) by targeting EGFR in orthotopic human mammary MDA-MB-468 and MDA-MB-231 and subcutaneous human epidermoid A431 carcinoma mouse models. Use of nanobody (99m)Tc-D10 of a size as small as 15.5 kDa enables detection of tumours by single photon emission computed tomography (SPECT) imaging already 45 min post intravenous administration with high tumour uptake (>3% ID/g) in small MDA-MB-468 and A431 tumours, with tumour volumes of 52.5 mm(3) ± 21.2 and 26.6 mm(3) ± 16.7, respectively. Fast blood clearance with a serum half-life of 4.9 min resulted in high in vivo contrast and ex vivo tumour to blood and tissue ratios. In contrast, no accumulation of (99m)Tc-D10 in MDA-MB-231 tumours characterized by a very low expression of EGFR was observed. Here we present specific and high contrast in vivo visualization of small human tumours overexpressing EGFR by preclinical multi-pinhole SPECT shortly after administration of anti-EGFR nanobody (99m)Tc-D10.


Assuntos
Receptores ErbB/imunologia , Compostos de Organotecnécio/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/farmacologia , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Western Blotting , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Cetuximab/química , Cetuximab/metabolismo , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Feminino , Citometria de Fluxo , Corantes Fluorescentes/química , Meia-Vida , Humanos , Marcação por Isótopo , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Compostos de Organotecnécio/química , Compostos de Organotecnécio/imunologia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Tecnécio/química , Distribuição Tecidual , Tomografia Computadorizada por Raios X
12.
Elife ; 5: e11712, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26830460

RESUMO

Neoangiogenesis is a pivotal therapeutic target in glioblastoma. Tumor monitoring requires imaging methods to assess treatment effects and disease progression. Until now mapping of the tumor vasculature has been difficult. We have developed a combined magnetic resonance and optical toolkit to study neoangiogenesis in glioma models. We use in vivo magnetic resonance imaging (MRI) and correlative ultramicroscopy (UM) of ex vivo cleared whole brains to track neovascularization. T2* imaging allows the identification of single vessels in glioma development and the quantification of neovessels over time. Pharmacological VEGF inhibition leads to partial vascular normalization with decreased vessel caliber, density, and permeability. To further resolve the tumor microvasculature, we performed correlated UM of fluorescently labeled microvessels in cleared brains. UM resolved typical features of neoangiogenesis and tumor cell invasion with a spatial resolution of ~5 µm. MR-UM can be used as a platform for three-dimensional mapping and high-resolution quantification of tumor angiogenesis.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Microscopia/métodos , Neovascularização Patológica , Animais , Modelos Animais de Doenças , Corantes Fluorescentes , Camundongos Endogâmicos C57BL , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA