RESUMO
BACKGROUND: There is good evidence for a substantial endogenous phytase activity originating from the epithelial tissue or the microbiota resident in the digestive tract of broiler chickens. However, ionophore coccidiostats, which are frequently used as feed additives in broiler diets to prevent coccidiosis, might affect the bacterial composition and the abundance of phytase producers in the gastrointestinal tract. The aim of the present study was to investigate whether supplementation of a frequently used mixture of the coccidiostats Narasin and Nicarbazin alone or together with a phytase affects microbiota composition of the digestive tract of broiler chickens, characteristics of phytate breakdown in crop and terminal ileum, and precaecal phosphorus and crude protein digestibility. RESULTS: Large differences in the microbial composition and diversity were detected between the treatments with and without coccidiostat supplementation. Disappearance of myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate) (InsP6) in the digestive tract, precaecal P digestibility, inorganic P in blood serum, and the concentration of inositol phosphate isomers in the crop and ileum digesta were significantly affected by phytase supplementation, but not by coccidiostat supplementation. Crude protein digestibility was increased by coccidiostat supplementation when more phosphate was available. Neither microbial abundance and diversity nor any other trait measured at the end of the experiment was affected by coccidiostat when it was only supplemented from day 1 to 10 of age. CONCLUSIONS: The coccidiostats used herein had large effects on overall microbiota composition of the digestive tract. The coccidiostats did not seem to affect endogenous or exogenous phytase activity up to the terminal ileum of broiler chickens. The effects of phytase on growth, phosphorus digestibility, and myo-inositol release were not altered by the presence of the coccidiostats. The effects of phytase and coccidiostats on nutrient digestibility can be of significant relevance for phosphorus and protein-reduced feeding concepts if confirmed in further experiments.
RESUMO
Carbon isotopic signatures ("δ¹³C") might reflect consumption of corn- and cane-based sweeteners. The authors hypothesized that the δ¹³C value of human serum is higher for individuals with high versus low intakes of corn- and cane-based sweeteners (measured as sweetened beverage intake). They conducted a cross-sectional study within the Atherosclerosis Risk in Communities Magnetic Resonance Imaging study (Maryland, 2005-2006). Diet was assessed by food frequency questionnaire, and blinded serum samples were assayed by natural abundance stable isotope mass spectroscopy. Studied were 186 participants (53% male; mean age, 71 years; mean body mass index, 30 kg/m²). Serum δ¹³C values for individuals with high sweetened beverage intakes were significantly higher than for those with low intakes (-19.15 vs. -19.47, P < 0.001). Serum δ¹³C value increased 0.20 for every serving/day of sweetened beverages (P < 0.01). The association between sweetened beverages and serum δ¹³C value remained significant after adjustment for confounding by corn-based product intake (P < 0.001). Serum δ¹³C values were also associated with waist circumference, body mass index, and waist-to-hip ratio. This study provides the first known evidence that the δ¹³C value of human serum differs between persons consuming low and high amounts of sweets. Within the proper framework, serum δ¹³C value could be developed into an objective biomarker promoting more reliable assessment of dietary sweets intake.
Assuntos
Aterosclerose/sangue , Peso Corporal , Isótopos de Carbono , Sacarose Alimentar/sangue , Obesidade/prevenção & controle , Edulcorantes , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Bebidas/estatística & dados numéricos , Biomarcadores/sangue , Índice de Massa Corporal , Estudos Transversais , Inquéritos sobre Dietas , District of Columbia/epidemiologia , Ingestão de Energia , Feminino , Análise de Alimentos/métodos , Preferências Alimentares , Humanos , Masculino , Maryland/epidemiologia , Pessoa de Meia-Idade , Avaliação Nutricional , Obesidade/sangue , Obesidade/etiologia , Inquéritos e Questionários , Circunferência da Cintura , Relação Cintura-QuadrilRESUMO
Americans spend >100 billion dollars on restaurant fast food each year; fast food meals comprise a disproportionate amount of both meat and calories within the U.S. diet. We used carbon and nitrogen stable isotopes to infer the source of feed to meat animals, the source of fat within fries, and the extent of fertilization and confinement inherent to production. We sampled food from McDonald's, Burger King, and Wendy's chains, purchasing >480 servings of hamburgers, chicken sandwiches and fries within geographically distributed U.S. cities: Los Angeles, San Francisco, Denver, Detroit, Boston, and Baltimore. From the entire sample set of beef and chicken, only 12 servings of beef had delta(13)C < -21 per thousand; for these animals only was a food source other than corn possible. We observed remarkably invariant values of delta(15)N in both beef and chicken, reflecting uniform confinement and exposure to heavily fertilized feed for all animals. The delta(13)C value of fries differed significantly among restaurants indicating that the chains used different protocols for deep-frying: Wendy's clearly used only corn oil, whereas McDonald's and Burger King favored other vegetable oils; this differed from ingredient reports. Our results highlighted the overwhelming importance of corn agriculture within virtually every aspect of fast food manufacture.
Assuntos
Análise de Alimentos , Alimentos , Zea mays/química , Ração Animal , Isótopos de Carbono , Geografia , Carne , Isótopos de NitrogênioRESUMO
Objective chemical biomarkers are needed in clinical studies of diet-related diseases to supplement subjective self-reporting methods. We report on several critical experiments for the development of clinically legitimate dietary stable isotope biomarkers within human blood. Our examination of human blood revealed the following: (1) Within blood clot and serum from anonymous individuals (201 males, 205 females) we observed: mean serum delta13C = -19.1 +/- 0.8 per thousand (standard deviation, SD); clot, -19.3 +/- 0.8 per thousand (SD); range = -15.8 per thousand to -23.4 per thousand. Highly statistically significant differences are observed between clot and serum, males and females for both clot and serum. For 15N (n = 206), mean serum = +8.8 +/- 0.5 per thousand (SD); clot +7.4 +/- 0.4 per thousand (SD); range = +6.3 per thousand to +10.5 per thousand. Blood serum is enriched in 15N relative to blood clot by +1.4 per thousand on average, which may reflect differing protein amino acid content. Serum nitrogen is statistically significantly different for males and females, however, clot shows no statistical difference. (2) Relative to clot, capillary blood is marginally different for 13C, but not 15N. Clot 13C is not significantly different from serum; however, it is depleted in 15N by 1.5 per thousand relative to serum. (3) We assessed the effect of blood additives (sodium fluoride and polymerized acrylamide resin) and laboratory process (autoclaving, freeze drying) commonly used to preserve or prepare venous blood. On average, no alteration in delta13C or delta15N is detected compared with unadulterated blood from the same individual. (4) Storage of blood with and without the additives described above for a period of up to 115 days exhibits statistically significant differences for 13C and 15N for sodium fluoride. However, storage for unadulterated blood and blood preserved with polymerized acrylamide resin does not change the delta13C or delta15N isotopic composition of the blood in a significant way. With these experiments, we gain a clinical context for future development of a stable isotope based dietary biomarker.
Assuntos
Centros Médicos Acadêmicos , Isótopos de Carbono/sangue , Isótopos de Nitrogênio/sangue , Feminino , Humanos , Masculino , Manejo de EspécimesRESUMO
BACKGROUND: Consumption of high-fructose corn syrup, as well as cane sugar, has been implicated in the rise of the obesity and diabetes epidemics. To date, however, no reliable biomarker for the consumption of these sweeteners is available. OBJECTIVE: The objective of the study was to determine the natural abundance stable-carbon-isotope signature of commonly consumed foods of plant origin. DESIGN: Samples from approximately 100 plant-derived food products purchased from local grocery stores were analyzed for 13C content by using stable-isotope mass spectroscopy. RESULTS: Measurement of natural abundance ratios of 13C to 12C in approximately 100 off-the-shelf foods found a distinct range of values for corn- and sugar cane-derived foods, particularly those rich in high-fructose corn syrup. CONCLUSION: A new technique, in which consumption of these foods may be estimated in humans by measuring the natural abundance stable-carbon-isotope profile of corn- and sugar cane-sweetened or sugar-containing foods as tracked in tissue or blood, could potentially provide an objective assessment of dietary intake and offer new opportunities for the study of diet-disease relations.