Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Bone Res ; 12(1): 10, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378678

RESUMO

Fibrous dysplasia (FD) is a rare, disabling skeletal disease for which there are no established treatments. Growing evidence supports inhibiting the osteoclastogenic factor receptor activator of nuclear kappa-B ligand (RANKL) as a potential treatment strategy. In this study, we investigated the mechanisms underlying RANKL inhibition in FD tissue and its likely indirect effects on osteoprogenitors by evaluating human FD tissue pre- and post-treatment in a phase 2 clinical trial of denosumab (NCT03571191) and in murine in vivo and ex vivo preclinical models. Histological analysis of human and mouse tissue demonstrated increased osteogenic maturation, reduced cellularity, and reduced expression of the pathogenic Gαs variant in FD lesions after RANKL inhibition. RNA sequencing of human and mouse tissue supported these findings. The interaction between osteoclasts and mutant osteoprogenitors was further assessed in an ex vivo lesion model, which indicated that the proliferation of abnormal FD osteoprogenitors was dependent on osteoclasts. The results from this study demonstrated that, in addition to its expected antiosteoclastic effect, denosumab reduces FD lesion activity by decreasing FD cell proliferation and increasing osteogenic maturation, leading to increased bone formation within lesions. These findings highlight the unappreciated role of cellular crosstalk between osteoclasts and preosteoblasts/osteoblasts as a driver of FD pathology and demonstrate a novel mechanism of action of denosumab in the treatment of bone disease.TRIAL REGISTRATION: ClinicalTrials.gov NCT03571191.


Assuntos
Denosumab , Displasia Fibrosa Óssea , Animais , Humanos , Camundongos , Denosumab/farmacologia , Displasia Fibrosa Óssea/tratamento farmacológico , Ligantes , Osteoblastos/metabolismo , Osteogênese/genética
2.
Front Physiol ; 14: 1119368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875017

RESUMO

Endochondral bone development and regeneration relies on activation and proliferation of periosteum derived-cells (PDCs). Biglycan (Bgn), a small proteoglycan found in extracellular matrix, is known to be expressed in bone and cartilage, however little is known about its influence during bone development. Here we link biglycan with osteoblast maturation starting during embryonic development that later affects bone integrity and strength. Biglycan gene deletion reduced the inflammatory response after fracture, leading to impaired periosteal expansion and callus formation. Using a novel 3D scaffold with PDCs, we found that biglycan could be important for the cartilage phase preceding bone formation. The absence of biglycan led to accelerated bone development with high levels of osteopontin, which appeared to be detrimental to the structural integrity of the bone. Collectively, our study identifies biglycan as an influencing factor in PDCs activation during bone development and bone regeneration after fracture.

3.
JBMR Plus ; 6(5): e10617, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35509631

RESUMO

For many years there has been a keen interest in developing regenerative treatment for temporomandibular joint-osteoarthritis (TMJ-OA). Currently, there is no consensus treatment due to the limited self-healing ability of articular cartilage and lack of understanding of the complex mechanisms regulating cartilage development in the TMJ. Endochondral ossification, the process of subchondral bone formation through chondrocyte differentiation, is critical for TMJ growth and development, and is tightly regulated by the composition of the extracellular matrix (ECM). Type VI collagen is a highly expressed ECM component in the TMJ cartilage, yet its specific functions are largely unknown. In this study, we investigated α2(VI)-deficient (Col6a2-knockout [KO]) mice, which are unable to secret or incorporate type VI collagen into their ECM. Compared with wild-type (WT) mice, the TMJ condyles of Col6a2-KO mice exhibit decreased bone volume/tissue volume (BV/TV) and a larger bone marrow space, suggesting the α2(VI)-deficient condyles have a failure in endochondral ossification. Differentiating chondrocytes are the main source of bone cells during endochondral ossification. Our study shows there is an increased number of chondrocytes in the proliferative zone and decreased Col10-expressing chondrocytes in Col6a2-KO cartilage, all pointing to abnormal chondrocyte differentiation and maturation. In addition, RNA sequencing (RNAseq) analysis identified distinct gene expression profiles related to cell cycle and ECM organization that were altered in the mutant condyles. These data also suggest that bone morphogenetic protein 2 (BMP2) activity was deregulated during chondrocyte differentiation. Immunohistochemical analysis indicated an upregulation of Col2 and Acan expression in Col6a2-KO cartilage. Moreover, the expression of pSmad1/5/8 and Runx2 was decreased in the Col6a2-KO cartilage compared with WT controls. Taken together, our data indicate that type VI collagen expressed in the TMJ cartilage is important for endochondral ossification, possibly by modulating the ECM and altering/disrupting signaling pathways important for TMJ chondrocyte differentiation. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

4.
Science ; 374(6575): eabl5450, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941394

RESUMO

Tissue-specific cues are critical for homeostasis at mucosal barriers. Here, we report that the clotting factor fibrin is a critical regulator of neutrophil function at the oral mucosal barrier. We demonstrate that commensal microbiota trigger extravascular fibrin deposition in the oral mucosa. Fibrin engages neutrophils through the αMß2 integrin receptor and activates effector functions, including the production of reactive oxygen species and neutrophil extracellular trap formation. These immune-protective neutrophil functions become tissue damaging in the context of impaired plasmin-mediated fibrinolysis in mice and humans. Concordantly, genetic polymorphisms in PLG, encoding plasminogen, are associated with common forms of periodontal disease. Thus, fibrin is a critical regulator of neutrophil effector function, and fibrin-neutrophil engagement may be a pathogenic instigator for a prevalent mucosal disease.


Assuntos
Fibrina/metabolismo , Mucosa Bucal/imunologia , Mucosa Bucal/metabolismo , Ativação de Neutrófilo , Neutrófilos/imunologia , Periodontite/genética , Plasminogênio/genética , Perda do Osso Alveolar , Animais , Armadilhas Extracelulares/metabolismo , Feminino , Fibrina/química , Fibrinogênio/metabolismo , Fibrinolisina/metabolismo , Fibrinólise , Microbioma Gastrointestinal/fisiologia , Gengiva/imunologia , Humanos , Imunidade nas Mucosas , Antígeno de Macrófago 1/metabolismo , Masculino , Camundongos , Mucosa Bucal/microbiologia , Periodontite/imunologia , Plasminogênio/deficiência , Plasminogênio/metabolismo , Polimorfismo de Nucleotídeo Único , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo
5.
JBMR Plus ; 5(3): e10474, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33778330

RESUMO

Micro-computed tomography (µCT) has become essential for analysis of mineralized as well as nonmineralized tissues and is therefore widely applicable in the life sciences. However, lack of standardized approaches and protocols for scanning, analyzing, and reporting data often makes it difficult to understand exactly how analyses were performed, how to interpret results, and if findings can be broadly compared with other models and studies. This problem is compounded in analysis of the dentoalveolar complex by the presence of four distinct mineralized tissues: enamel, dentin, cementum, and alveolar bone. Furthermore, these hard tissues interface with adjacent soft tissues, the dental pulp and periodontal ligament (PDL), making for a complex organ. Drawing on others' and our own experience analyzing rodent dentoalveolar tissues by µCT, we introduce techniques to successfully analyze dentoalveolar tissues with similar or disparate compositions, densities, and morphological characteristics. Our goal is to provide practical guidelines for µCT analysis of rodent dentoalveolar tissues, including approaches to optimize scan parameters (filters, voltage, voxel size, and integration time), reproducibly orient samples, define regions and volumes of interest, segment and subdivide tissues, interpret findings, and report methods and results. We include illustrative examples of analyses performed on genetically engineered mouse models with phenotypes in enamel, dentin, cementum, and alveolar bone. The recommendations are designed to increase transparency and reproducibility, promote best practices, and provide a basic framework to apply µCT analysis to the dentoalveolar complex that can also be extrapolated to a variety of other tissues of the body. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

6.
Nat Commun ; 11(1): 5982, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239617

RESUMO

Expanding the mass of pancreatic insulin-producing beta cells through re-activation of beta cell replication has been proposed as a therapy to prevent or delay the appearance of diabetes. Pancreatic beta cells exhibit an age-dependent decrease in their proliferative activity, partly related to changes in the systemic environment. Here we report the identification of CCN4/Wisp1 as a circulating factor more abundant in pre-weaning than in adult mice. We show that Wisp1 promotes endogenous and transplanted adult beta cell proliferation in vivo. We validate these findings using isolated mouse and human islets and find that the beta cell trophic effect of Wisp1 is dependent on Akt signaling. In summary, our study reveals the role of Wisp1 as an inducer of beta cell replication, supporting the idea that the use of young blood factors may be a useful strategy to expand adult beta cell mass.


Assuntos
Envelhecimento/fisiologia , Proteínas de Sinalização Intercelular CCN/metabolismo , Células Secretoras de Insulina/fisiologia , Transplante das Ilhotas Pancreáticas/métodos , Proteínas Proto-Oncogênicas/metabolismo , Envelhecimento/sangue , Animais , Proteínas de Sinalização Intercelular CCN/sangue , Proteínas de Sinalização Intercelular CCN/genética , Proliferação de Células , Células Cultivadas , Meios de Cultura/metabolismo , Diabetes Mellitus/terapia , Feminino , Humanos , Células Secretoras de Insulina/transplante , Masculino , Camundongos , Camundongos Knockout , Cultura Primária de Células/métodos , Proteínas Proto-Oncogênicas/sangue , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/fisiologia , Desmame
7.
J Struct Biol ; 212(3): 107627, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950603

RESUMO

Biglycan (Bgn) and Fibromodulin (Fmod) are small leucine rich proteoglycans (SLRPs) which are abundant in the extra-cellular matrix (ECM) of mineralized tissues. We have previously generated a Bgn/Fmod double knock-out (DKO) mouse model and found it has a 3-fold increase in osteoclastogenesis compared with Wild type (WT) controls, resulting in a markedly low bone mass (LBM) phenotype. To try and rescue/repair the LBM phenotype of Bgn/Fmod DKO mice by suppressing osteoclast formation and activity, 3- and 26-week-old Bgn/Fmod DKO mice and age/gender matched WT controls were treated with OPG-Fc for 6 weeks after which bone parameters were evaluated using DEXA, micro-computed tomography (µCT) and serum biomarkers analyses. In the appendicular skeleton, OPG-Fc treatment improved some morphometric and geometric parameters in both the trabecular and cortical compartments in Bgn/Fmod DKO female and male mice, especially in the repair module. For many of the skeletal parameters analyzed, the Bgn/Fmod DKO mice were more responsive to the treatment than their WT controls. In addition, we found that OPG-Fc treatment was not able to prevent or ameliorate the formation of ectopic ossification, which are common lesions seen in aged joints and are one of the phenotypical hallmarks of our Bgn/Fmod DKO model. Analysis of skull bones, specifically the occipital bone, showed the treatment recovered some parameters of LBM phenotype in the craniofacial skeleton, more so in the younger rescue module. Using OPG-Fc as treatment alleviated, yet did not completely restore, the severe osteopenia and mineralized tissue structural abnormalities that Bgn/Fmod DKO mice suffer from.


Assuntos
Biglicano/deficiência , Osso e Ossos/efeitos dos fármacos , Fibromodulina/deficiência , Fragmentos Fc das Imunoglobulinas/farmacologia , Osteoprotegerina/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Esqueleto/efeitos dos fármacos , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Osso e Ossos/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Fenótipo , Esqueleto/metabolismo
8.
Sci Rep ; 10(1): 13749, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792616

RESUMO

Type VI collagen is well known for its role in muscular disorders, however its function in bone is still not well understood. To examine its role in bone we analyzed femoral and vertebral bone mass by micro-computed tomography analysis, which showed lower bone volume/total volume and trabecular number in Col6α2-KO mice compared with WT. Dynamic histomorphometry showed no differences in trabecular bone formation between WT and Col6α2-KO mice based on the mineral appositional rate, bone formation rate, and mineralizing perimeter. Femoral sections were assessed for the abundance of Tartrate Resistant Acid Phosphatase-positive osteoclasts, which revealed that mutant mice had more osteoclasts compared with WT mice, indicating that the primary effect of Col6a2 deficiency is on osteoclastogenesis. When bone marrow stromal cells (BMSCs) from WT and Col6α2-KO mice were treated with rmTNFα protein, the Col6α2-KO cells expressed higher levels of TNFα mRNA compared with WT cells. This was accompanied by higher levels of p-p65, a down-stream target of TNFα, suggesting that BMSCs from Col6α2-KO mice are highly sensitive to TNFα signaling. Taken together, our data imply that Col6a2 deficiency causes trabecular bone loss by enhancing osteoclast differentiation through enhanced TNFα signaling.


Assuntos
Osso Esponjoso/crescimento & desenvolvimento , Osso Esponjoso/patologia , Colágeno Tipo VI/genética , Osteogênese/genética , Fator de Necrose Tumoral alfa/metabolismo , Animais , Densidade Óssea/genética , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/citologia , Osteogênese/fisiologia , Células RAW 264.7 , Transdução de Sinais , Células Estromais/metabolismo , Fator de Transcrição RelA/metabolismo , Microtomografia por Raio-X
9.
J Histochem Cytochem ; 68(11): 747-762, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32623936

RESUMO

Small leucine rich proteoglycans (SLRPs), including Biglycan, have key roles in many organ and tissue systems. The goal of this article is to review the function of Biglycan and other related SLRPs in mineralizing tissues of the skeleton. The review is divided into sections that include Biglycan's role in structural biology, signaling, craniofacial and long bone homeostasis, remodeled skeletal tissues, and in human genetics. While many cell types in the skeleton are now known to be affected by Biglycan, there are still unanswered questions about its mechanism of action(s).


Assuntos
Biglicano/metabolismo , Músculo Esquelético/metabolismo , Animais , Humanos , Músculo Esquelético/citologia
10.
J Biol Chem ; 293(1): 254-270, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29101233

RESUMO

Bone-resorbing multinucleated osteoclasts that play a central role in the maintenance and repair of our bones are formed from bone marrow myeloid progenitor cells by a complex differentiation process that culminates in fusion of mononuclear osteoclast precursors. In this study, we uncoupled the cell fusion step from both pre-fusion stages of osteoclastogenic differentiation and the post-fusion expansion of the nascent fusion connections. We accumulated ready-to-fuse cells in the presence of the fusion inhibitor lysophosphatidylcholine and then removed the inhibitor to study synchronized cell fusion. We found that osteoclast fusion required the dendrocyte-expressed seven transmembrane protein (DC-STAMP)-dependent non-apoptotic exposure of phosphatidylserine at the surface of fusion-committed cells. Fusion also depended on extracellular annexins, phosphatidylserine-binding proteins, which, along with annexin-binding protein S100A4, regulated fusogenic activity of syncytin 1. Thus, in contrast to fusion processes mediated by a single protein, such as epithelial cell fusion in Caenorhabditis elegans, the cell fusion step in osteoclastogenesis is controlled by phosphatidylserine-regulated activity of several proteins.


Assuntos
Produtos do Gene env/metabolismo , Osteogênese/fisiologia , Fosfatidilserinas/fisiologia , Proteínas da Gravidez/metabolismo , Animais , Anexinas/metabolismo , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Diferenciação Celular , Fusão Celular/métodos , Linhagem Celular , Membrana Celular/metabolismo , Produtos do Gene env/fisiologia , Hematopoese , Humanos , Fusão de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Osteoclastos/fisiologia , Fosfatidilserinas/metabolismo , Proteínas da Gravidez/fisiologia , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo
11.
Sci Rep ; 7(1): 12627, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974711

RESUMO

Biglycan (Bgn) and Fibromodulin (Fmod) are subtypes of the small leucine-rich family of proteoglycans (SLRP). In this study we examined the skeletal phenotype of BgnFmod double knockout (BgnFmod KO) mice and found they were smaller in size and have markedly reduced bone mass compared to WT. The low bone mass (LBM) phenotype is the result of both the osteoblasts and osteoclasts from BgnFmod KO mice having higher differentiation potential and being more active compared to WT mice. Using multiple approaches, we showed that both Bgn and Fmod directly bind TNFα as well as RANKL in a dose dependent manner and that despite expressing higher levels of both TNFα and RANKL, BgnFmod KO derived osteoblasts cannot retain these cytokines in the vicinity of the cells, which leads to elevated TNFα and RANKL signaling and enhanced osteoclastogenesis. Furthermore, adding either Bgn or Fmod to osteoclast precursor cultures significantly attenuated the cells ability to form TRAP positive, multinucleated giant cells. In summary, our data indicates that Bgn and Fmod expressed by the bone forming cells, are novel coupling ECM components that control bone mass through sequestration of TNFα and/or RANKL, thereby adjusting their bioavailability in order to regulate osteoclastogenesis.


Assuntos
Biglicano/genética , Fibromodulina/genética , Osteogênese/genética , Ligante RANK/genética , Proteoglicanos Pequenos Ricos em Leucina/genética , Fator de Necrose Tumoral alfa/genética , Animais , Densidade Óssea/genética , Osso e Ossos/metabolismo , Diferenciação Celular/genética , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo
12.
Cells Tissues Organs ; 204(2): 84-92, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28419987

RESUMO

Temporomandibular joint (TMJ) osteoarthritis (OA) is a complex disease that affects both cartilage and subchondral bone. It is accompanied by loss of extracellular matrix (ECM) and may be controlled by bone morphogenetic protein-2 (BMP-2). We analyzed the effect of BMP-2 in both cartilage and subchondral bone in a TMJ-OA animal model that is deficient in biglycan (Bgn) and fibromodulin (Fmod) (Bgn-/-Fmod-/-). Whole mandibles were dissected from 3-week-old wild-type (WT) and Bgn-/-Fmod-/- mice and incubated with and without 250 µg/mL BMP-2 for 2 days using an explant culture system. Condyle growth was measured by microCT and the expression levels of cartilage and bone-related genes were analyzed using RT-PCR or by immunohistochemistry from condyles that contained an intact cartilage/subchondral bone interface. Osteoclast activity was estimated by tartrate-resistant acid phosphatase (TRAP) staining and by TRAP, Rankl, and Adamts4 mRNA expression levels. Our results showed that most parameters examined were slightly up-regulated in WT samples treated with BMP-2, and this up-regulation was significantly enhanced in the Bgn-/-Fmod-/- mice. The up-regulation of both catabolic and anabolic agents did not appear to positively affect the overall growth of Bgn-/-Fmod-/- condyles compared to WT controls. In summary, the up-regulation of both anabolic and catabolic genes in the WT and Bgn-/-Fmod-/- TMJs treated with BMP-2 suggests that BMP increases matrix turnover in the condyle, and, further, that Bgn and Fmod could have protective roles in regulating this process.


Assuntos
Biglicano/metabolismo , Proteína Morfogenética Óssea 2/genética , Matriz Extracelular/metabolismo , Osteoartrite/genética , Articulação Temporomandibular/patologia , Animais , Proteína Morfogenética Óssea 2/metabolismo , Modelos Animais de Doenças , Feminino , Fibromodulina , Humanos , Camundongos , Camundongos Knockout , Osteoartrite/metabolismo
13.
Matrix Biol ; 52-54: 141-150, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27072616

RESUMO

The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing [1]. By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bgn in modulating angiogenesis during fracture healing. Using micro-computed tomography angiography we found significant differences in the vessel size and volume among other parameters. To further understand the mechanistic basis for this, we explored the relationship between Bgn and the anti-angiogenic protein endostatin. Immunohistochemistry (IHC) showed co-localization of Bgn and endostatin in regions of bone formation, with increased endostatin staining in Bgn-KO compared to WT at 14days post-fracture. To further elucidate the relationship between Bgn and endostatin, an endothelial cell tube formation assay was used. This study showed that endothelial cells treated with endostatin had significantly decreased vessel length and vessel branches compared to untreated cells, while cells treated with endostatin and Bgn at a 1:1M ratio had vessel length and vessel branches comparable to untreated cells. This indicated that Bgn was able to mitigate the inhibitory effect of endostatin on endothelial cell growth. In summary, these results suggest that Bgn is needed for proper blood vessel formation during fracture healing, and one mechanism by which Bgn impacts angiogenesis is through inhibition of endostatin.


Assuntos
Biglicano/metabolismo , Regulação para Baixo , Endostatinas/metabolismo , Consolidação da Fratura , Neovascularização Fisiológica , Animais , Biglicano/genética , Angiografia por Tomografia Computadorizada , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Técnicas de Inativação de Genes , Camundongos , Microtomografia por Raio-X
14.
J Biol Chem ; 290(22): 14004-18, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25864198

RESUMO

WISP1/CCN4 (hereafter referred to as WISP1), a member of the CCN family, is found in mineralized tissues and is produced by osteoblasts and their precursors. In this study, Wisp1-deficient (Wisp1(-/-)) mice were generated. Using dual-energy x-ray absorptiometry, we showed that by 3 months, the total bone mineral density of Wisp1(-/-) mice was significantly lower than that of WT mice. Further investigation by micro-computed tomography showed that female Wisp1(-/-) mice had decreased trabecular bone volume/total volume and that both male and female Wisp1(-/-) mice had decreased cortical bone thickness accompanied by diminished biomechanical strength. The molecular basis for decreased bone mass in Wisp1(-/-) mice arises from reduced bone formation likely caused by osteogenic progenitors that differentiate poorly compared with WT cells. Osteoclast precursors from Wisp1(-/-) mice developed more tartrate-resistant acid phosphatase-positive cells in vitro and in transplants, suggesting that WISP1 is also a negative regulator of osteoclast differentiation. When bone turnover (formation and resorption) was induced by ovariectomy, Wisp1(-/-) mice had lower bone mineral density compared WT mice, confirming the potential for multiple roles for WISP1 in controlling bone homeostasis. Wisp1(-/-) bone marrow stromal cells had reduced expression of ß-catenin and its target genes, potentially caused by WISP1 inhibition of SOST binding to LRP6. Taken together, our data suggest that the decreased bone mass found in Wisp1(-/-) mice could potentially be caused by an insufficiency in the osteodifferentiation capacity of bone marrow stromal cells arising from diminished Wnt signaling, ultimately leading to altered bone turnover and weaker biomechanically compromised bones.


Assuntos
Remodelação Óssea , Osso e Ossos/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Via de Sinalização Wnt , Alelos , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Feminino , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos/metabolismo , RNA Mensageiro/metabolismo , Receptores de LDL/metabolismo , Recombinação Genética , Células Estromais/citologia , Proteínas Supressoras de Tumor/metabolismo , Microtomografia por Raio-X
15.
Matrix Biol ; 35: 223-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24373744

RESUMO

Matrix proteoglycans such as biglycan (Bgn) dominate skeletal tissue and yet its exact role in regulating bone function is still unclear. In this paper we describe the potential role of (Bgn) in the fracture healing process. We hypothesized that Bgn could regulate fracture healing because of previous work showing that it can affect normal bone formation. To test this hypothesis, we created fractures in femurs of 6-week-old male wild type (WT or Bgn+/0) and Bgn-deficient (Bgn-KO or Bgn-/0) mice using a custom-made standardized fracture device, and analyzed the process of healing over time. The formation of a callus around the fracture site was observed at both 7 and 14 days post-fracture in WT and Bgn-deficient mice and immunohistochemistry revealed that Bgn was highly expressed in the fracture callus of WT mice, localizing within woven bone and cartilage. Micro-computed tomography (µCT) analysis of the region surrounding the fracture line showed that the Bgn-deficient mice had a smaller callus than WT mice. Histology of the same region also showed the presence of less cartilage and woven bone in the Bgn-deficient mice compared to WT mice. Picrosirius red staining of the callus visualized under polarized light showed that there was less fibrillar collagen in the Bgn-deficient mice, a finding confirmed by immunohistochemistry using antibodies to type I collagen. Interestingly, real time RT-PCR of the callus at 7 days post-fracture showed a significant decrease in relative vascular endothelial growth factor A (VEGF) gene expression by Bgn-deficient mice as compared to WT. Moreover, VEGF was shown to bind directly to Bgn through a solid-phase binding assay. The inability of Bgn to directly enhance VEGF-induced signaling suggests that Bgn has a unique role in regulating vessel formation, potentially related to VEGF storage or stabilization in the matrix. Taken together, these results suggest that Bgn has a regulatory role in the process of bone formation during fracture healing, and further, that reduced angiogenesis could be the molecular basis.


Assuntos
Biglicano/metabolismo , Consolidação da Fratura/fisiologia , Neovascularização Fisiológica/fisiologia , Osteogênese/fisiologia , Transdução de Sinais/fisiologia , Animais , Calo Ósseo/diagnóstico por imagem , Calo Ósseo/metabolismo , Primers do DNA/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microtomografia por Raio-X
16.
Proc Natl Acad Sci U S A ; 109(38): 15455-60, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949675

RESUMO

Bone mass accrual is a major determinant of skeletal mass, governed by bone remodeling, which consists of bone resorption by osteoclasts and bone formation by osteoblasts. Bone mass accrual is inhibited by sympathetic signaling centrally regulated through activation of receptors for serotonin, leptin, and ACh. However, skeletal activity of the parasympathetic nervous system (PSNS) has not been reported at the bone level. Here we report skeletal immune-positive fibers for the PSNS marker vesicular ACh transporter (VAChT). Pseudorabies virus inoculated into the distal femoral metaphysis is identifiable in the sacral intermediolateral cell column and central autonomic nucleus, demonstrating PSNS femoral innervation originating in the spinal cord. The PSNS neurotransmitter ACh targets nicotinic (nAChRs), but not muscarinic receptors in bone cells, affecting mainly osteoclasts. nAChR agonists up-regulate osteoclast apoptosis and restrain bone resorption. Mice deficient of the α(2)nAChR subunit have increased bone resorption and low bone mass. Silencing of the IL-1 receptor signaling in the central nervous system by brain-specific overexpression of the human IL-1 receptor antagonist (hIL1ra(Ast)(+/+) mice) leads to very low skeletal VAChT expression and ACh levels. These mice also exhibit increased bone resorption and low bone mass. In WT but not in hIL1ra(Ast)(+/+) mice, the cholinergic ACh esterase inhibitor pyridostigmine increases ACh levels and bone mass apparently by inhibiting bone resorption. Taken together, these results identify a previously unexplored key central IL-1-parasympathetic-bone axis that antagonizes the skeletal sympathetic tone, thus potently favoring bone mass accrual.


Assuntos
Osso e Ossos/metabolismo , Interleucina-1/metabolismo , Sistema Nervoso Parassimpático/fisiologia , Acetilcolina/metabolismo , Animais , Apoptose , Densidade Óssea , Reabsorção Óssea , Encéfalo/metabolismo , Proliferação de Células , Coração/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Brometo de Piridostigmina/farmacologia , Transdução de Sinais
17.
J Bone Miner Res ; 26(2): 308-16, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20803555

RESUMO

CB2 is a Gi protein-coupled receptor activated by endo- and phytocannabinoids, thus inhibiting stimulated adenylyl cyclase activity. CB2 is expressed in bone cells and Cb2 null mice show a marked age-related bone loss. CB2-specific agonists both attenuate and rescue ovariectomy-induced bone loss. Activation of CB2 stimulates osteoblast proliferation and bone marrow derived colony-forming units osteoblastic. Here we show that selective and nonselective CB2 agonists are mitogenic in MC3T3 E1 and newborn mouse calvarial osteoblastic cultures. The CB2 mitogenic signaling depends critically on the stimulation of Erk1/2 phosphorylation and de novo synthesis of MAP kinase-activated protein kinase 2 (Mapkapk2) mRNA and protein. Further downstream, CB2 activation enhances CREB transcriptional activity and cyclin D1 mRNA expression. The CB2-induced stimulation of CREB and cyclin D1 is inhibitable by pertussis toxin, the MEK-Erk1/2 inhibitors PD098059 and U0126, and Mapkapk2 siRNA. These data demonstrate that in osteoblasts CB2 targets a Gi protein-cyclin D1 mitogenic axis. Erk1/2 phosphorylation and Mapkapk2 protein synthesis are critical intermediates in this axis.


Assuntos
Ciclina D1/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Mitógenos/metabolismo , Osteoblastos/enzimologia , Receptor CB2 de Canabinoide/metabolismo , Células 3T3 , Animais , Butadienos/farmacologia , Flavonoides/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nitrilas/farmacologia , Osteoblastos/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
18.
Proc Natl Acad Sci U S A ; 107(41): 17710-5, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20876113

RESUMO

Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive.


Assuntos
Amidas/farmacologia , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Ácidos Oleicos/farmacologia , Osteoblastos/metabolismo , Osteoporose/metabolismo , Serina/farmacologia , Análise de Variância , Animais , Western Blotting , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ácidos Oleicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Serina/metabolismo
19.
Fam Cancer ; 5(4): 327-35, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16724248

RESUMO

Using a specially constructed questionnaire, the effect of BRCA test results for the Jewish founder mutations and genetic counseling on women's attitudes towards and acceptance of preventive surgeries was evaluated. The subjects consisted of 99 women 43% of whom were found to be carriers as opposed to 57%--non-carriers. After learning of their genetic status, 94% of the carriers and 28% of the non-carriers declared having positively considered the option of preventive oophorectomy. However, only about 25% of the carriers and 4.5% of the non-carriers had positively considered the option of preventive mastectomy. In practice, 78% of the carriers and 18% of the non-carriers who proved to be eligible for these procedures underwent preventive oophorectomy compared with 19% of carriers and 1.8% of non-carriers who underwent preventive mastectomy. Almost all carriers, as well as a majority of the non-carriers, who finally opted for the preventive surgeries did so after learning the result of their genetic test. The different attitudes toward the two surgeries were found to be based on varied beliefs regarding the two procedures. Preventive oophorectomy was perceived as being more acceptable to women than preventive mastectomy both from an attitudinal as well as practical aspect. These differences may be the result of cultural factors, of women's trust in the ability of screening tests to prevent morbidity and/or mortality, of the effect of the surgeries on body image and of different counseling protocols.


Assuntos
Neoplasias da Mama/prevenção & controle , Genes BRCA1 , Genes BRCA2 , Mastectomia , Mutação , Neoplasias Ovarianas/prevenção & controle , Ovariectomia , Adulto , Feminino , Heterozigoto , Humanos , Pessoa de Meia-Idade
20.
J Cell Physiol ; 207(3): 784-92, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16514606

RESUMO

Heparan sulfate proteoglycans (HSPGs) are ubiquitous macromolecules. In bone, they are associated with cell surfaces and the extracellular matrix (ECM). The heparan sulfate (HS) chains of HSPGs bind a multitude of bioactive molecules, thereby controlling normal and pathologic processes. The HS-degrading endoglycosidase, heparanase, has been implicated in processes such as inflammation, vascularization associated with wound healing and malignancies, and cancer metastasis. Here we show progressive mRNA expression of the hpa gene (encoding heparanase) in murine bone marrow stromal cells undergoing osteoblastic (bone forming) differentiation and in primary calvarial osteoblasts. Bone marrow stromal cells derived from transgenic mice expressing recombinant human heparanase (rh-heparanase) and MC3T3 E1 osteoblastic cells exposed to soluble rh-heparanase spontaneously undergo osteogenic differentiation. In addition, the transgenic bone marrow stromal cells degrade HS chains. In wild-type (WT) and hpa-transgenic (hpa-tg) mice, heparanase is weakly expressed throughout the bone marrow with a substantial increase in osteoblasts and osteocytes, especially in the hpa-tg mice. Heparanase expression was absent in osteoclasts. Micro-computed tomographic and histomorphometric skeletal analyses in male and female hpa-tg versus WT mice show markedly increased trabecular bone mass, cortical thickness, and bone formation rate, but no difference in osteoclast number. Collectively, our data suggest that proteoglycans tonically suppress osteoblast function and that this inhibition is alleviated by HS degradation with heparanase.


Assuntos
Densidade Óssea/fisiologia , Glucuronidase/metabolismo , Osteoblastos/metabolismo , Osteogênese , Animais , Medula Óssea/metabolismo , Proliferação de Células , Células Cultivadas , Fêmur/citologia , Fêmur/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Glucuronidase/genética , Heparitina Sulfato/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia , Fenótipo , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA