Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gait Posture ; 113: 158-166, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38905850

RESUMO

INTRODUCTION: Femoral deformities are highly prevalent in children with cerebral palsy (CP) and can have a severe impact on patients' gait abilities. While the mechanical stress regime within the distal femoral growth plate remains underexplored, understanding it is crucial given bone's adaptive response to mechanical stimuli. We quantified stresses at the distal femoral growth plate to deepen our understanding of the relationship between healthy and pathological gait patterns, internal loading, and femoral growth patterns. METHODS: This study included three-dimensional motion capture data and magnetic resonance images of 13 typically developing children and twelve participants with cerebral palsy. Employing a multi-scale mechanobiological approach, integrating musculoskeletal simulations and subject-specific finite element analysis, we investigated the orientation of the distal femoral growth plate and the stresses within it. Limbs of participants with CP were grouped depending on their knee flexion kinematics during stance phase as this potentially changes the stresses induced by knee and patellofemoral joint contact forces. RESULTS: Despite similar growth plate orientation across groups, significant differences were observed in the shape and distribution of growth values. Higher growth rates were noted in the anterior compartment in CP limbs with high knee flexion while CP limbs with normal knee flexion showed high similarity to the group of healthy participants. DISCUSSION: Results indicate that the knee flexion angle during the stance phase is of high relevance for typical bone growth at the distal femur. The evaluated growth rates reveal plausible results, as long-term promoted growth in the anterior compartment leads to anterior bending of the femur which was confirmed for the group with high knee flexion through analyses of the femoral geometry. The framework for these multi-scale simulations has been made accessible on GitHub, empowering peers to conduct similar mechanobiological studies. Advancing our understanding of femoral bone development could ultimately support clinical decision-making.

2.
J Clin Med ; 13(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792301

RESUMO

Background: Internal rotation contractures of the shoulder are common sequelae of conservatively treated obstetric brachial plexus palsy (OBPP) with incomplete spontaneous neurological recovery. Humerus derotation osteotomy has been suggested as a possible treatment option to improve arm positioning. However, consensus as to whether humerus derotation osteotomy can successfully restore limb function is missing. Methods: In the present controlled cohort study, we aimed at analyzing global upper extremity kinematics with a 3D-video analysis system in children with shoulder internal rotation contractures secondary to OBPP before, and one year after, humerus derotation osteotomy. Patients under 18 years of age that presented to our center with conservatively treated internal rotation contractures of the shoulder and subsequently underwent humerus derotation osteotomy were included. The unimpaired arm served as a respective control. Results: Pre-operatively, all patients showed severe internal rotation contractures of the shoulder of almost 60° at rest. At the follow-up, the position of the shoulder at rest was greatly shifted to 9° of internal rotation. The patients showed statistically significant improvement in maximum external rotation and abduction of the shoulder, as well as in maximum flexion of the elbow, and the range of motion of pro/supination. The maximum internal rotation of the shoulder, however, was diminished after the osteotomy. Conclusions: Our data indicated that derotational osteotomy is a promising procedure which can be used to correct for internal rotation contractures secondary to OBPP. Moreover, 3D-video analysis proved to be a useful tool that supplies the surgeon with both precise information about the degree of distortion pre-operatively, thus helping to decide on the amount of correction, and secondly, a measurement of the post-operative gain in upper extremity function.

3.
Sensors (Basel) ; 24(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793945

RESUMO

The progress in markerless technologies is providing clinicians with tools to shorten the time of assessment rapidly, but raises questions about the potential trade-off in accuracy compared to traditional marker-based systems. This study evaluated the OpenCap system against a traditional marker-based system-Vicon. Our focus was on its performance in capturing walking both toward and away from two iPhone cameras in the same setting, which allowed capturing the Timed Up and Go (TUG) test. The performance of the OpenCap system was compared to that of a standard marker-based system by comparing spatial-temporal and kinematic parameters in 10 participants. The study focused on identifying potential discrepancies in accuracy and comparing results using correlation analysis. Case examples further explored our results. The OpenCap system demonstrated good accuracy in spatial-temporal parameters but faced challenges in accurately capturing kinematic parameters, especially in the walking direction facing away from the cameras. Notably, the two walking directions observed significant differences in pelvic obliquity, hip abduction, and ankle flexion. Our findings suggest areas for improvement in markerless technologies, highlighting their potential in clinical settings.


Assuntos
Análise da Marcha , Marcha , Smartphone , Caminhada , Humanos , Projetos Piloto , Análise da Marcha/métodos , Análise da Marcha/instrumentação , Masculino , Fenômenos Biomecânicos/fisiologia , Feminino , Marcha/fisiologia , Caminhada/fisiologia , Adulto
4.
Clin Biomech (Bristol, Avon) ; 115: 106254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669918

RESUMO

BACKGROUND: This study investigated the most accurate method for estimating the hip joint center position in clinical 3D gait analysis for young individuals with high amounts of soft tissue. We compared position estimates of five regression-based and two functional methods to the hip joint center position obtained through 3D free-hand ultrasound. METHODS: For this purpose, the data of 14 overweight or obese individuals with a mean age of 13.6 (SD 2.1 yrs) and a BMI of 36.5 (SD 7.1 kg/m2, range 26-52 kg/m2) who underwent standard clinical 3D gait analysis were used. The data of each participant were processed with five regression-based and two functional methods and compared to the hip joint center identified via 3D free-hand ultrasound. FINDINGS: The absolute location errors to 3D free-hand ultrasound for each anatomical plane and the Euclidean distances served as outcomes next to their effects on gait variables. The data suggest that regression-based methods are preferable to functional methods in this population, as the latter demonstrated the highest variability in accuracy with large errors for some individuals. INTERPRETATION: Based on our findings we recommend using the regression method presented by Hara et al. due to its superior overall accuracy of <9 mm on average in all planes and the lowest impact on kinematic and kinetic output variables. We do not recommend using the Harrington equations (single and multiple) in populations with high amounts of soft tissue as they require pelvic depth as input, which can be massively biased when a lot of soft tissue is present around the pelvis.


Assuntos
Marcha , Articulação do Quadril , Imageamento Tridimensional , Ultrassonografia , Humanos , Articulação do Quadril/diagnóstico por imagem , Feminino , Masculino , Ultrassonografia/métodos , Marcha/fisiologia , Adolescente , Imageamento Tridimensional/métodos , Análise da Marcha/métodos , Criança , Obesidade/fisiopatologia , Reprodutibilidade dos Testes , Fenômenos Biomecânicos
5.
Gait Posture ; 111: 65-74, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653178

RESUMO

BACKGROUND: Clinical gait analysis (CGA) is a systematic approach to comprehensively evaluate gait patterns, quantify impairments, plan targeted interventions, and evaluate the impact of interventions. However, international standards for CGA are currently lacking, resulting in various national initiatives. Standards are important to ensure safe and effective healthcare practices and to enable evidence-based clinical decision-making, facilitating interoperability, and reimbursement under national healthcare policies. Collaborative clinical and research work between European countries would benefit from common standards. RESEARCH OBJECTIVE: This study aimed to review the current laboratory practices for CGA in Europe. METHODS: A comprehensive survey was conducted by the European Society for Movement Analysis in Adults and Children (ESMAC), in close collaboration with the European national societies. The survey involved 97 gait laboratories across 16 countries. The survey assessed several aspects related to CGA, including equipment used, data collection, processing, and reporting methods. RESULTS: There was a consensus between laboratories concerning the data collected during CGA. The Conventional Gait Model (CGM) was the most used biomechanical model for calculating kinematics and kinetics. Respondents also reported the use of video recording, 3D motion capture systems, force plates, and surface electromyography. While there was a consensus on the reporting of CGA data, variations were reported in training, documentation, data preprocessing and equipment maintenance practices. SIGNIFICANCE: The findings of this study will serve as a foundation for the development of standardized guidelines for CGA in Europe.


Assuntos
Análise da Marcha , Humanos , Europa (Continente) , Inquéritos e Questionários , Sociedades Médicas , Fenômenos Biomecânicos , Criança , Adulto , Eletromiografia
6.
Sci Rep ; 14(1): 3567, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347085

RESUMO

Excessive loads at lower limb joints can lead to pain and degenerative diseases. Altering joint loads with muscle coordination retraining might help to treat or prevent clinical symptoms in a non-invasive way. Knowing how much muscle coordination retraining can reduce joint loads and which muscles have the biggest impact on joint loads is crucial for personalized gait retraining. We introduced a simulation framework to quantify the potential of muscle coordination retraining to reduce joint loads for an individuum. Furthermore, the proposed framework enables to pinpoint muscles, which alterations have the highest likelihood to reduce joint loads. Simulations were performed based on three-dimensional motion capture data of five healthy adolescents (femoral torsion 10°-29°, tibial torsion 19°-38°) and five patients with idiopathic torsional deformities at the femur and/or tibia (femoral torsion 18°-52°, tibial torsion 3°-50°). For each participant, a musculoskeletal model was modified to match the femoral and tibial geometry obtained from magnetic resonance images. Each participant's model and the corresponding motion capture data were used as input for a Monte Carlo analysis to investigate how different muscle coordination strategies influence joint loads. OpenSim was used to run 10,000 simulations for each participant. Root-mean-square of muscle forces and peak joint contact forces were compared between simulations. Depending on the participant, altering muscle coordination led to a maximum reduction in hip, knee, patellofemoral and ankle joint loads between 5 and 18%, 4% and 45%, 16% and 36%, and 2% and 6%, respectively. In some but not all participants reducing joint loads at one joint increased joint loads at other joints. The required alteration in muscle forces to achieve a reduction in joint loads showed a large variability between participants. The potential of muscle coordination retraining to reduce joint loads depends on the person's musculoskeletal geometry and gait pattern and therefore showed a large variability between participants, which highlights the usefulness and importance of the proposed framework to personalize gait retraining.


Assuntos
Marcha , Músculos , Adolescente , Humanos , Método de Monte Carlo , Marcha/fisiologia , Fêmur/fisiologia , Tíbia/fisiologia , Articulação do Joelho/fisiologia , Fenômenos Biomecânicos , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA