Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Water Res ; 230: 119568, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621278

RESUMO

BACKGROUND: Trihalomethanes (THM), a major class of disinfection by-products, are widespread and are associated with adverse health effects. We conducted a global evaluation of current THM regulations and concentrations in drinking water. METHODS: We included 120 countries (∼7000 million inhabitants in 2016), representing 94% of the world population. We searched for country regulations and THM routine monitoring data using a questionnaire addressed to referent contacts. Scientific and gray literature was reviewed where contacts were not identified or declined participation. We obtained or estimated annual average THM concentrations, weighted to the population served when possible. RESULTS: Drinking water regulations were ascertained for 116/120 (97%) countries, with 89/116 (77%) including THM regulations. Routine monitoring was implemented in 47/89 (53%) of countries with THM regulations. THM data with a varying population coverage was obtained for 69/120 (58%) countries consisting of ∼5600 million inhabitants (76% of world's population in 2016). Population coverage was ≥90% in 14 countries, mostly in the Global North, 50-89% in 19 countries, 11-49% among 21 countries, and ≤10% in 14 countries including India, China, Russian Federation and Nigeria (40% of world's population). DISCUSSION: An enormous gap exists in THM regulatory status, routine monitoring practice, reporting and data availability among countries, especially between high- vs. low- and middle-income countries (LMICs). More efforts are warranted to regulate and systematically assess chemical quality of drinking water, centralize, harmonize, and openly report data, particularly in LMICs.


Assuntos
Água Potável , Poluentes Químicos da Água , Trialometanos/análise , Abastecimento de Água , Poluentes Químicos da Água/análise , Desinfecção
2.
J Environ Sci (China) ; 117: 161-172, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725068

RESUMO

A survey was conducted at eight U.S. drinking water plants, that spanned a wide range of water qualities and treatment/disinfection practices. Plants that treated heavily-wastewater-impacted source waters had lower trihalomethane to dihaloacetonitrile ratios due to the presence of more organic nitrogen and HAN precursors. As the bromide to total organic carbon ratio increased, there was more bromine incorporation into DBPs. This has been shown in other studies for THMs and selected emerging DBPs (HANs), whereas this study examined bromine incorporation for a wider group of emerging DBPs (haloacetaldehydes, halonitromethanes). Moreover, bromine incorporation into the emerging DBPs was, in general, similar to that of the THMs. Epidemiology studies that show an association between adverse health effects and brominated THMs may be due to the formation of brominated emerging DBPs of heath concern. Plants with higher free chlorine contact times before ammonia addition to form chloramines had less iodinated DBP formation in chloraminated distribution systems, where there was more oxidation of the iodide to iodate (a sink for the iodide) by the chlorine. This has been shown in many bench-scale studies (primarily for iodinated THMs), but seldom in full-scale studies (where this study also showed the impact on total organic iodine. Collectively, the THMs, haloacetic acids, and emerging DBPs accounted for a significant portion of the TOCl, TOBr, and TOI; however, ∼50% of the TOCl and TOBr is still unknown. The correlation of the sum of detected DBPs with the TOCl and TOBr suggests that they can be used as reliable surrogates.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Bromo , Cloro , Desinfetantes/análise , Desinfecção , Halogenação , Iodetos , Trialometanos/análise , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 56(12): 8245-8254, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638116

RESUMO

Nitrification and biofilm growth within distribution systems remain major issues for drinking water treatment plants utilizing chloramine disinfection. Many chloraminated plants periodically switch to chlorine disinfection for several weeks to mitigate these issues, known as "chlorine burns". The evaluation of disinfection byproduct (DBP) formation during chlorine burns beyond regulated DBPs is scarce. Here, we quantified an extensive suite of 80 regulated and emerging, unregulated DBPs from 10 DBP classes in drinking water from two U.S. drinking water plants during chlorine burn and chloramination treatments. Total organic halogen (TOX), including total organic chlorine, total organic bromine, and total organic iodine, was also quantified, and mammalian cell cytotoxicity of whole water mixtures was assessed in chlorine burn waters for the first time. TOX and most DBPs increased in concentration during chlorine burns, and one emerging DBP, trichloroacetaldehyde, reached 99 µg/L. THMs and HAAs reached concentrations of 249 and 271 µg/L, respectively. Two highly cytotoxic nitrogenous DBP classes, haloacetamides and haloacetonitriles, increased during chlorine burns, reaching up to 14.2 and 19.3 µg/L, respectively. Cytotoxicity did not always increase from chloramine treatment to chlorine burn, but a 100% increase in cytotoxicity was observed for one plant. These data highlight that consumer DBP exposure during chlorine burns can be substantial.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Cloraminas , Cloro , Desinfecção , Halogenação , Halogênios , Mamíferos , Trialometanos , Poluentes Químicos da Água/toxicidade
4.
Environ Sci Technol ; 56(1): 392-402, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34910457

RESUMO

This study reveals key disinfection byproduct (DBP) toxicity drivers in drinking water across the United States. DBPs, which are ubiquitous in drinking water, form by the reaction of disinfectants, organic matter, bromide, and iodide and are generally present at 100-1000× higher concentrations than other contaminants. DBPs are linked to bladder cancer, miscarriage, and birth defects in human epidemiologic studies, but it is not known as to which DBPs are responsible. We report the most comprehensive investigation of drinking water toxicity to date, with measurements of extracted whole-water mammalian cell chronic cytotoxicity, over 70 regulated and priority unregulated DBPs, and total organic chlorine, bromine, and iodine, revealing a more complete picture of toxicity drivers. A variety of impacted waters were investigated, including those impacted by wastewater, agriculture, and seawater. The results revealed that unregulated haloacetonitriles, particularly dihaloacetonitriles, are important toxicity drivers. In seawater-impacted water treated with chloramine, toxicity was driven by iodinated DBPs, particularly iodoacetic acids. In chlorinated waters, the combined total organic chlorine and bromine was highly and significantly correlated with toxicity (r = 0.94, P < 0.01); in chloraminated waters, total organic iodine was highly and significantly correlated with toxicity (r = 0.80, P < 0.001). These results indicate that haloacetonitriles and iodoacetic acids should be prioritized in future research for potential regulation consideration.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Cloro , Desinfetantes/toxicidade , Desinfecção , Halogenação , Humanos , Mamíferos , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
5.
Water Res ; 159: 203-213, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096067

RESUMO

In order to better understand the occurrence of disinfection byproducts (DBPs) in tap water and their real impacts on consumers, this study made a one-year long survey of the temporal variations of a series of DBPs before and after a point-of-use (POU) treatment facility installed in a building serving for ∼300 people. Water samples were collected every week at a fixed location and time for 1 year, and frequent samplings were carried out every 6 h a day for 1 month at selected seasons, which ultimately amounted to 322 samples. The results show that the concentrations of DBPs were higher in the summer than other seasons, with the lowest DBP levels being observed in spring. Within one week, higher levels of haloacetic acids (HAAs) were identified on weekdays than those on weekends. Diurnally, trihalomethanes, HAAs, and haloacetaldehydes were found to be higher at noon but lower in the evening. Consistent with other studies, the variations of most DBPs were somewhat positively related to the changes of temperature and organic matter, but negatively related to the quantity of free chlorine. With the use of a POU facility, which equips with two activated carbon cartridges and a boiler in sequence, most of DBPs were dramatically reduced, leading to 62-100% lower cytotoxicity for the measured DBPs. The study hence provides a real-water evidence about the DBP occurrences in a typical distribution system endpoint and the efficiency of a typical POU on mitigating DBP risks.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Inquéritos e Questionários , Trialometanos
6.
Environ Int ; 126: 242-251, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30822653

RESUMO

BACKGROUND: N-nitroso compounds (NOC) formed endogenously after nitrate/nitrite ingestion and disinfection by-products (DBPs) are suspected colorectal carcinogens, but epidemiologic evidence of these associations is limited. OBJECTIVES: We investigated the relationship between drinking water exposures and incident colorectal cancers in a cohort of postmenopausal women. METHODS: Using historical nitrate-nitrogen (NO3-N) measurements and estimates of total trihalomethanes (TTHM), the sum of 5 or 6 haloacetic acids (HAAs), and individual DBPs in public water supplies (PWS), we computed average exposures and years of exposure above one-half the U.S. maximum contaminant level (>1/2-MCL; >5 mg/L NO3-N and >40 µg/L TTHM). Nitrate/nitrite intakes from dietary sources were estimated using a food frequency questionnaire. We estimated hazard ratios (HR) and 95% confidence intervals (CI) from Cox regression models. We assessed NO3-N interactions with DBPs and with factors influencing endogenous NOC formation. RESULTS: We identified 624 colon and 158 rectal cancers (1986-2010) among 15,910 women reporting PWS use >10 years. Ingestion of NO3-N from drinking water was not associated with risk. Colon cancer risks were non-significantly associated with the average TTHM levels >17.7 µg/L (HRQ5vsQ1 = 1.13, CI = 0.89-1.44; ptrend = 0.11) and were elevated for any duration of exposure >1/2-MCL. Rectal cancer risks were associated with the highest TTHM levels (HRQ5vsQ1 = 1.71, CI = 1.00-2.92; ptrend = 0.22) but not with years >1/2-MCL. Bromodichloromethane (HRQ4vsQ1 = 1.89, CI = 1.17-3.00; ptrend = 0.09) and trichloroacetic acid (HRQ4vsQ1 = 1.92, CI = 1.20-3.09; ptrend = 0.18) levels were also associated with risk of rectal cancer. We found no evidence of interaction between TTHM and NO3-N on the risk of either cancer. Dietary analyses yielded a positive colon cancer association with red meat, but not with processed meat intake or estimated nitrate/nitrite from specific dietary sources. CONCLUSIONS: Our results suggest that exposure to TTHM in drinking water is associated with increased risk of rectal cancer. Positive findings for individual THMs and HAAs for both colon and rectal cancers require replication in other studies. We found no associations for nitrate overall or in subgroups with presumed higher NOC exposure.


Assuntos
Acetatos/análise , Neoplasias do Colo/epidemiologia , Água Potável/análise , Nitratos/análise , Nitritos/análise , Neoplasias Retais/epidemiologia , Trialometanos/análise , Poluentes Químicos da Água/análise , Idoso , Exposição Dietética/análise , Desinfecção , Monitoramento Ambiental , Feminino , Humanos , Iowa/epidemiologia , Carne , Pessoa de Meia-Idade , Pós-Menopausa , Risco
7.
Chemosphere ; 220: 858-865, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33395807

RESUMO

Two chlorophenylacetonitriles (CPANs) (2-chloro- and 3,4-dichlorophenylacetonitrile), representatives of an emerging class of aromatic nitrogenous disinfection byproducts, were recently identified in chlor(am)inated drinking water with liquid/liquid extraction and gas chromatography/mass spectrometry (GC/MS). Due to their high cytotoxicity, they are potentially significant drinking water contaminants. The detection limit for these two CPANs with the previous method was 100 ng L-1. To search for additional CPAN isomers, a more sensitive method for the simultaneous determination of eight CPANs was developed using solid-phase extraction (SPE)-GC/MS. GC/MS parameters and SPE pre-concentration conditions, including SPE cartridge, eluent type, eluent volume, and sample pH, were optimized. Under optimized conditions, the new method had method detection limits, method quantification limits, and precision ranging from 0.15 to 0.37 ng L-1, 0.50-0.95 ng L-1, and 5.8%-11%, respectively. The recoveries of the eight CPANs ranged from 92% to 102%. The concentrations of the eight CPANs in nine finished drinking waters were determined to be at concentrations ranging from 0.5 to 155 ng L-1. Seven CPANs were detectable in all samples. CPANs were detected at concentrations between 0.8 and 155 ng L-1 in chlorinated waters, and from 0.5 to 15 ng L-1 in chloraminated waters. Across all waters, the sum of all CPANs in chloraminated waters was 13% of that in chlorinated systems.

8.
Sci Total Environ ; 697: 133993, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32380594

RESUMO

N­nitrosodimethylamine (NDMA) was detected in the source water of some Chinese drinking water treatment plants (DWTPs), which decreased in concentration along the treatment train. Volatilization, photolysis, and/or biodegradation were suspected of being capable of attenuating NDMA. In this study, the contribution of these mechanisms to NDMA removal was investigated by a field study in a conventional DWTP with aerated bio-pretreatment, as well as in laboratory-based experiments. The effluent of each unit process (i.e., aerated bio-pretreatment tank, horizontal sedimentation tank, sand filter) of this DWTP was sampled in the winter and summer, and the concentration of NDMA, its formation potential, and other water quality parameters were measured. NDMA removal by volatilization and biodegradation was simulated in batch experiments, and that by photolysis was calculated with parameters reported in the literature. The sampling results indicated that the aerated biofilm reactor of this DWTP removed 48% of the NDMA in August and 22% in December. According to modeling results, it could be well explained by photolysis (NDMA removal of 51% in summer and 25% in winter) and biotreatment (NDMA removal of 0.2-12% in summer and 0.1-6.1% in winter), with little contribution from aeration (NDMA removal of 0.8%). The sampling results indicated that the sedimentation tank removed 19% of NDMA in August and 9.2% in December. According to modeling results, it could be well explained by photolysis (NDMA removal of 16% in August and 9.4% in December), but little by volatilization. Thus, photolysis was shown to be the most important process for NDMA removal in this DWTP. Further investigation is needed to better understand NDMA removal during biotreatment.


Assuntos
Dimetilnitrosamina/isolamento & purificação , Água Potável/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Biodegradação Ambiental , Fotólise , Volatilização
9.
Water Res ; 145: 103-112, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30121431

RESUMO

Haloacetamides (HAMs), an emerging class of disinfection by-products, have received increasing attention due to their elevated cyto- and genotoxicity. However, only limited information is available regarding the iodinated analogues. This study investigated the formation and speciation of iodinated haloacetamides (I-HAMs) and their chlorinated/brominated analogues during the chloramination of bromide and/or iodide-containing waters and a model compound solution over various time periods. The rapid formation of diiodoacetamide (DIAM) was observed during chloramination of three simulated samples, whereas brominated (Br-HAMs) and chlorinated haloacetamides (Cl-HAMs) increased slowly with increasing reaction time. To further understand the differences in the formation of HAMs containing different halogens, experiments with the model compound asparagine in the presence/absence of iodide were conducted. Moreover, iodine utilisation factors and iodine incorporation factors were observed to increase significantly faster and were substantially higher than those of bromine. This implied that, compared with bromide, iodide has substantially greater potential to be transformed to the corresponding HAMs during chloramination, similar to that of other classes of DBPs. That is, I-HAMs formed faster than the other species investigated, including Cl-HAMs and Br-HAMs, in the early reaction stages (0-3 h). The effect of the bromide/iodide ratio (i.e., constant iodide, increasing bromide) on I-HAM formation was also examined. With increasing bromide/iodide ratio, the formation of Br-HAMs increased and dichloroacetamide decreased, but the formation of DIAM was largely unchanged. This was consistent with the constant level of iodide in spite of the increasing bromide. Chlorine and ammonia are applied separately during chloramination in water treatment, so the effect of pre-chlorination (before adding ammonia) on the formation and speciation of I-HAMs during in situ chloramination was also evaluated. Effective mitigation of DIAM formation with in situ chloramination was achieved, and the efficiency improved with increasing pre-chlorination time, where iodide was oxidised to iodate. The HAM-associated cytotoxicity was calculated to determine the change in toxicity at different reaction times, bromide/iodide ratios, and pre-chlorination times. A similar trend as the formation of I-HAMs was observed, which increased rapidly in the first 3 h, but decreased somewhat subsequently. When the bromide/iodide ratio and pre-chlorination time was increased, the calculated toxicity of the HAMs increased (due to more formation of Br-HAMs and less Cl-HAMs) and decreased (due to less DIAM formation), respectively.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Cloraminas , Cloro , Desinfecção , Halogenação , Iodetos
10.
Water Res ; 142: 490-500, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29920459

RESUMO

Haloacetamides (HAMs), a group of nitrogenous disinfection byproducts (N-DBPs), can decompose to form corresponding intermediate products and other DBPs. The stability of ten different HAMs, including two chlorinated, five brominated, and three iodinated species was investigated with and without the presence of chlorine, chloramines, and reactive solutes such as quenching agents. The HAM basic hydrolysis and chlorination kinetics were well described by a second-order kinetics model, including first-order in HAM and hydroxide and first-order in HAM and hypochlorite, respectively, whereas the HAM neutral hydrolysis kinetic was first-order in HAM. Furthermore, HAMs decompose instantaneously when exposed to hypochlorite, which was almost two and nine orders of magnitude faster than HAM basic and neutral hydrolysis, respectively. In general, HAM hydrolysis and chlorination rates both increased with increasing pH and the number of halogens substituted on the methyl group. Moreover, chlorinated HAMs are more unstable than their brominated analogs, followed by the iodinated ones, due to the decrease in the electron-withdrawing inductive effect from chlorine to iodine atom. During hydrolysis, HAMs mainly directly decompose into the corresponding haloacetic acids (HAAs) via a nucleophilic reaction between the carbonyl carbon and hydroxide. For HAM chlorination reactions, hypochlorite reacts with HAMs to form the N-chloro-HAMs (N-Cl-HAMs) via Cl+ transfer from chlorine to the amide nitrogen. N-Cl-HAMs can further degrade to form HAAs via hypochlorous acid addition. In contrast, the reactions between chloramines and HAMs were found to be insignificant. Additionally, four common quenching agents, including sodium sulfite, sodium thiosulfate, ascorbic acid, and ammonium chloride, were demonstrated to expedite HAM degradation, whereas ammonium chloride was the least influential among the four. Taft linear free energy relationships were established for both HAM hydrolysis and chlorination reactions, based on which the hydrolysis and chlorination rate constants for three monohaloacetamides were estimated. The hydrolysis and chlorination rates of 13 HAMs decreased in the following order: TCAM > BDCAM > DBCAM > TBAM > DCAM > BCAM > DBAM > CIAM > BIAM > DIAM > MCAM > MBAM > MIAM (where C = chloro, B = bromo, I = iodo, T = tri, D = di, M = mono). Lastly, using the HAM kinetic model established in this study, HAM half-lifes in drinking water distribution systems can be predicted on the basis of pH and residual chlorine concentration.


Assuntos
Amidas/química , Água Potável/química , Poluentes Químicos da Água/química , Bromo/química , Cloraminas/química , Cloro/química , Desinfetantes/química , Desinfecção , Halogenação , Ácido Hipocloroso/química , Iodo/química , Cinética , Nitrogênio/química , Purificação da Água
11.
Int J Cancer ; 142(2): 251-261, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28921575

RESUMO

Nitrate and nitrite are precursors of N-nitroso compounds (NOC), probable human carcinogens that cause pancreatic tumors in animals. Disinfection by-products (DBP) exposures have also been linked with digestive system cancers, but few studies have evaluated relationships with pancreatic cancer. We investigated the association of pancreatic cancer with these drinking water contaminants and dietary nitrate/nitrite in a cohort of postmenopausal women in Iowa (1986-2011). We used historical monitoring and treatment data to estimate levels of long-term average nitrate and total trihalomethanes (TTHM; the sum of the most prevalent DBP class) and the duration exceeding one-half the maximum contaminant level (>½ MCL; 5 mg/L nitrate-nitrogen, 40 µg/L TTHM) among participants on public water supplies (PWS) >10 years. We estimated dietary nitrate and nitrite intakes using a food frequency questionnaire. We computed hazard ratios (HR) and 95% confidence intervals (CI) using Cox regression and evaluated nitrate interactions with smoking and vitamin C intake. We identified 313 cases among 34,242 women, including 152 with >10 years PWS use (N = 15,710). Multivariable models of average nitrate showed no association with pancreatic cancer (HRp95vs. Q1 = 1.16, 95% CI: 0.51-2.64). Associations with average TTHM levels were also null (HRQ4vs. Q1 = 0.70, 95% CI:0.42-1.18). We observed no trend with increasing years of exposure to either contaminant at levels >½ MCL. Positive associations were suggested in the highest dietary nitrite intake from processed meat (HRp95vs. Q1 = 1.66, 95% CI 1.00-2.75;ptrend = 0.05). We found no interactions of nitrate with known modifiers of endogenous NOC formation. Our results suggest that nitrite intake from processed meat may be a risk factor for pancreatic cancer.


Assuntos
Desinfecção/métodos , Nitratos/efeitos adversos , Nitritos/efeitos adversos , Neoplasias Pancreáticas/etiologia , Idoso , Feminino , Seguimentos , Humanos , Iowa , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Pós-Menopausa , Prognóstico , Estudos Prospectivos , Fatores de Risco
12.
J Environ Sci (China) ; 58: 183-190, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28774607

RESUMO

In the 1980s, a case-control epidemiologic study was conducted in Iowa (USA) to analyze the association between exposure to disinfection by-products (DBPs) and bladder cancer risk. Trihalomethanes (THMs), the most commonly measured and dominant class of DBPs in drinking water, served as a primary metric and surrogate for the full DBP mixture. Average THM exposure was calculated, based on rough estimates of past levels in Iowa. To reduce misclassification, a follow-up study was undertaken to improve estimates of past THM levels and to re-evaluate their association with cancer risk. In addition, the risk associated with haloacetic acids, another class of DBPs, was examined. In the original analysis, surface water treatment plants were assigned one of two possible THM levels depending on the point of chlorination. The re-assessment considered each utility treating surface or groundwater on a case-by-case basis. Multiple treatment/disinfection scenarios and water quality parameters were considered with actual DBP measurements to develop estimates of past levels. The highest annual average THM level in the re-analysis was 156µg/L compared to 74µg/L for the original analysis. This allowed the analysis of subjects exposed at higher levels (>96µg/L). The re-analysis established a new approach, based on case studies and an understanding of the water quality and operational parameters that impact DBP formation, for determining historical exposure.


Assuntos
Água Potável/química , Exposição Ambiental/estatística & dados numéricos , Modelos Químicos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Desinfecção/métodos , Seguimentos , Humanos , Iowa/epidemiologia , Neoplasias/epidemiologia , Medição de Risco/métodos , Trialometanos/análise , Abastecimento de Água/estatística & dados numéricos
13.
Epidemiology ; 28(5): 703-711, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28252454

RESUMO

BACKGROUND: N-nitroso compounds formed endogenously after nitrate/nitrite ingestion are animal renal carcinogens. Previous epidemiologic studies of drinking water nitrate did not evaluate other potentially toxic water contaminants, including the suspected renal carcinogen chloroform. METHODS: In a cohort of postmenopausal women in Iowa (1986-2010), we used historical measurements to estimate long-term average concentrations of nitrate-nitrogen (NO3-N) and disinfection by-products (DBP) in public water supplies. For NO3-N and the regulated DBP (total trihalomethanes [THM] and the sum of five haloacetic acids [HAA5]), we estimated the number of years of exposure above one-half the current maximum contaminant level (>½-MCL NO3-N; >5 mg/L). Dietary intakes were assessed via food frequency questionnaire. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) with Cox models, and evaluated interactions with factors influencing N-nitroso compound formation. RESULTS: We identified 125 incident kidney cancers among 15,577 women reporting using water from public supplies >10 years. In multivariable models, risk was higher in the 95th percentile of average NO3-N (HRp95vsQ1 = 2.3; CI: 1.2, 4.3; Ptrend = 0.33) and for any years of exposure >½-MCL; adjustment for total THM did not materially change these associations. There were no independent relationships with total THM, individual THMs chloroform and bromodichloromethane, or with haloacetic acids. Dietary analyses yielded associations with high nitrite intake from processed meats but not nitrate or nitrite overall. We found no interactions. CONCLUSIONS: Relatively high nitrate levels in public water supplies were associated with increased risk of renal cancer. Our results also suggest that nitrite from processed meat is a renal cancer risk factor.


Assuntos
Desinfetantes/efeitos adversos , Neoplasias Renais/induzido quimicamente , Nitratos/efeitos adversos , Idoso , Desinfetantes/análise , Água Potável/efeitos adversos , Água Potável/análise , Feminino , Humanos , Pessoa de Meia-Idade , Nitratos/análise , Modelos de Riscos Proporcionais , Fatores de Risco
14.
J Hazard Mater ; 321: 509-516, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27669392

RESUMO

This study systematically evaluates the capabilities of five types of household water treatment (HWT) methods (including boiler heating, microwave irradiation, pouring, stirring, and shaking) on the removals of four regulated trihalomethanes (THM4) and three iodinated halomethanes (IHMs) under a variety of conditions simulative of residential uses. Overall, the results clearly showed promising capabilities of all five HWT methods in controlling volatile disinfection by-products (DBPs), and heating with a boiler was the most effective approach among all methods due to the synergistic effects of water turbulence and bubbling phenomena. A contemporary boiler equipped with an automatic switch-off function reduced on average 92% of seven halomethanes (HM7) at favourable conditions. The removal increased significantly with increasing initial concentrations and the rates correlated well with the logarithmic Henry's law constants and molecular weights of compounds, with triiodomethane being the most refractory species. Meanwhile, the importance of water handling habits was revealed, including power input, operation time, volume, heating/cooling speed, cooling method, and capping conditions. The findings hence explored the potentials of HWTs on DBP control and pointed out a potential limit to DBP epidemiology studies that do not consider water handling habits.

15.
Chemosphere ; 164: 330-338, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27592322

RESUMO

The formation of carcinogenic N-nitrosodimethylamine (NDMA) during chloramination at drinking water treatment plants has raised concerns as more plants have switched from chlorine to chloramine disinfection. In this study, a source of NDMA precursors that has yet to be investigated was examined. Veterinary antibiotics are used in large quantities at animal agricultural operations. They may contaminate drinking water sources and may not be removed during wastewater and drinking water treatment. Ten antibiotics used in animal agriculture were shown to produce NDMA or N-nitrosodiethylamine (NDEA) during chloramination. Molar conversions ranged from 0.04 to 4.9 percent, with antibiotics containing more than one dimethylamine (DMA) functional group forming significantly more NDMA. The highest formation for most of the compounds was seen near pH 8.4, in a range of pH 6 to 11 that was investigated. The effect of chlorine-to-ammonia ratio (Cl2/NH3), temperature, and hold time varied for each chemical, suggesting that the effects of these parameters were compound-specific.


Assuntos
Antibacterianos/análise , Dimetilnitrosamina/análise , Drogas Veterinárias/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Amônia/análise , Criação de Animais Domésticos , Antibacterianos/química , Cloraminas/química , Cloro/análise , Dimetilaminas/química , Dimetilnitrosamina/química , Desinfecção , Água Potável/análise , Drogas Veterinárias/química , Águas Residuárias/química , Poluentes Químicos da Água/química
16.
Sci Total Environ ; 572: 1231-1237, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27522283

RESUMO

N-nitrosodimethylamine (NDMA) is a disinfection byproduct preferentially formed in chloraminated water. NDMA may be formed from certain chemicals containing dimethylamine (DMA) functional groups. This reaction may be slowed by the presence of natural organic matter (NOM). In this study, NOM fractionated by size or polarity was tested for its ability to slow or impede the formation of NDMA from two DMA-containing precursors, the antibiotics tetracycline and spiramycin. The high molecular weight NOM fractions (>10KDa) were shown to be the most effective in reducing the amount of NDMA formed from the precursor chemicals. The filtrate of a C-18 non-polar cartridge was also effective at reducing NDMA formation from tetracycline (spyramycin not tested). Therefore, polar and charged NOM components may be responsible for the reduction in NDMA formation. A possible mechanism for the reduction of NDMA formation from tetracycline is complexation due to the hydrogen bonding of the DMA functional group on tetracycline to polar phenolic functional groups in the NOM.


Assuntos
Antibacterianos/química , Dimetilnitrosamina/química , Desinfetantes/química , Poluentes Químicos da Água/química , Cloraminas/química , Purificação da Água
17.
Environ Sci Technol ; 50(17): 9583-91, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27467860

RESUMO

Certain unregulated disinfection byproducts (DBPs) are more of a health concern than regulated DBPs. Brominated species are typically more cytotoxic and genotoxic than their chlorinated analogs. The impact of granular activated carbon (GAC) on controlling the formation of regulated and selected unregulated DBPs following chlorine disinfection was evaluated. The predicted cyto- and genotoxicity of DBPs was calculated using published potencies based on the comet assay for Chinese hamster ovary cells (assesses the level of DNA strand breaks). Additionally, genotoxicity was measured using the SOS-Chromotest (detects DNA-damaging agents). The class sum concentrations of trihalomethanes, haloacetic acids, and unregulated DBPs, and the SOS genotoxicity followed the breakthrough of dissolved organic carbon (DOC), however the formation of brominated species did not. The bromide/DOC ratio was higher than the influent through much of the breakthrough curve (GAC does not remove bromide), which resulted in elevated brominated DBP concentrations in the effluent. Based on the potency of the haloacetonitriles and halonitromethanes, these nitrogen-containing DBPs were the driving agents of the predicted genotoxicity. GAC treatment of drinking or reclaimed waters with appreciable levels of bromide and dissolved organic nitrogen may not control the formation of unregulated DBPs with higher genotoxicity potencies.


Assuntos
Brometos , Purificação da Água , Animais , Células CHO , Cricetulus , Desinfetantes , Desinfecção , Poluentes Químicos da Água
18.
Epidemiology ; 27(6): 903-11, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27468006

RESUMO

BACKGROUND: We examined the association between exposure during pregnancy to trihalomethanes, the most common water disinfection by-products, and birth outcomes in a European cohort study (Health Impacts of Long-Term Exposure to Disinfection By-Products in Drinking Water). We took into account exposure through different water uses, measures of water toxicity, and genetic susceptibility. METHODS: We enrolled 14,005 mothers (2002-2010) and their children from France, Greece, Lithuania, Spain, and the UK. Information on lifestyle- and water-related activities was recorded. We ascertained residential concentrations of trihalomethanes through regulatory records and ad hoc sampling campaigns and estimated route-specific trihalomethane uptake by trimester and for whole pregnancy. We examined single nucleotide polymorphisms and copy number variants in disinfection by-product metabolizing genes in nested case-control studies. RESULTS: Average levels of trihalomethanes ranged from around 10 µg/L to above the regulatory limits in the EU of 100 µg/L between centers. There was no association between birth weight and total trihalomethane exposure during pregnancy (ß = 2.2 g in birth weight per 10 µg/L of trihalomethane, 95% confidence interval = 3.3, 7.6). Birth weight was not associated with exposure through different routes or with specific trihalomethane species. Exposure to trihalomethanes was not associated with low birth weight (odds ratio [OR] per 10 µg/L = 1.02, 95% confidence interval = 0.95, 1.10), small-for-gestational age (OR = 0.99, 0.94, 1.03) and preterm births (OR = 0.98, 0.9, 1.05). We found no gene-environment interactions for mother or child polymorphisms in relation to preterm birth or small-for-gestational age. CONCLUSIONS: In this large European study, we found no association between birth outcomes and trihalomethane exposures during pregnancy in the total population or in potentially genetically susceptible subgroups. (See video abstract at http://links.lww.com/EDE/B104.).


Assuntos
Desinfetantes/toxicidade , Água Potável , Exposição Materna/efeitos adversos , Polimorfismo de Nucleotídeo Único , Resultado da Gravidez , Trialometanos/toxicidade , Poluentes Químicos da Água/toxicidade , Estudos de Casos e Controles , Estudos de Coortes , Variações do Número de Cópias de DNA , Desinfetantes/análise , Desinfecção/métodos , Água Potável/análise , Água Potável/química , Europa (Continente) , Feminino , Interação Gene-Ambiente , Marcadores Genéticos , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , Masculino , Exposição Materna/estatística & dados numéricos , Gravidez , Nascimento Prematuro/etiologia , Estudos Prospectivos , Fatores de Risco , Trialometanos/análise , Poluentes Químicos da Água/análise
19.
Environ Health Perspect ; 124(11): 1751-1758, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27258851

RESUMO

BACKGROUND: Nitrate is a drinking water contaminant arising from agricultural sources, and it is a precursor in the endogenous formation of N-nitroso compounds (NOC), which are possible bladder carcinogens. OBJECTIVES: We investigated the ingestion of nitrate and nitrite from drinking water and diet and bladder cancer risk in women. METHODS: We identified incident bladder cancers among a cohort of 34,708 postmenopausal women in Iowa (1986-2010). Dietary nitrate and nitrite intakes were estimated from a baseline food frequency questionnaire. Drinking water source and duration were assessed in a 1989 follow-up. For women using public water supplies (PWS) > 10 years (n = 15,577), we estimated average nitrate (NO3-N) and total trihalomethane (TTHM) levels and the number of years exceeding one-half the maximum contaminant level (NO3-N: 5 mg/L, TTHM: 40 µg/mL) from historical monitoring data. We computed hazard ratios (HRs) and 95% confidence intervals (CIs), and assessed nitrate interactions with TTHM and with modifiers of NOC formation (smoking, vitamin C). RESULTS: We identified 258 bladder cancer cases, including 130 among women > 10 years at their PWS. In multivariable-adjusted models, we observed nonsignificant associations among women in the highest versus lowest quartile of average drinking water nitrate concentration (HR = 1.48; 95% CI: 0.92, 2.40; ptrend = 0.11), and we found significant associations among those exposed ≥ 4 years to drinking water with > 5 mg/L NO3-N (HR = 1.62; 95% CI: 1.06, 2.47; ptrend = 0.03) compared with women having 0 years of comparable exposure. TTHM adjustment had little influence on associations, and we observed no modification by vitamin C intake. Relative to a common reference group of never smokers with the lowest nitrate exposures, associations were strongest for current smokers with the highest nitrate exposures (HR = 3.67; 95% CI: 1.43, 9.38 for average water NO3-N and HR = 3.48; 95% CI: 1.20, 10.06 and ≥ 4 years > 5 mg/L, respectively). Dietary nitrate and nitrite intakes were not associated with bladder cancer. CONCLUSIONS: Long-term ingestion of elevated nitrate in drinking water was associated with an increased risk of bladder cancer among postmenopausal women. Citation: Jones RR, Weyer PJ, DellaValle CT, Inoue-Choi M, Anderson KE, Cantor KP, Krasner S, Robien K, Beane Freeman LE, Silverman DT, Ward MH. 2016. Nitrate from drinking water and diet and bladder cancer among postmenopausal women in Iowa. Environ Health Perspect 124:1751-1758; http://dx.doi.org/10.1289/EHP191.


Assuntos
Água Potável/química , Monitoramento Ambiental , Nitratos/análise , Pós-Menopausa , Neoplasias da Bexiga Urinária/epidemiologia , Poluentes Químicos da Água/análise , Idoso , Feminino , Humanos , Iowa/epidemiologia , Pessoa de Meia-Idade , Análise Multivariada , Medição de Risco
20.
Water Res ; 98: 168-75, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27105030

RESUMO

N-Nitrosamines (NAs) in drinking water have attracted considerable attention in recent years due to their high carcinogenicity, frequent occurrence, and their potential regulation. During the past three years, we have collected about 164 water samples of finished water, tap water, and source water from 23 provinces, 44 cities from large cities to small towns, and 155 sampling points all over China. The occurrence of NAs in the finished and tap water was much higher in China than that in the U.S. Nine NAs were measured and NDMA had the highest concentration. The occurrence of NDMA was in 33% of the finished waters of water treatment plants and in 41% of the tap waters. The average NDMA concentration in finished and tap waters was 11 and 13 ng/L, respectively. Formation potentials (FPs) of source waters were examined with an average NDMA FP of 66 ng/L. Large variations in NA occurrence were observed geographically in China and temporally in different seasons. The Yangtze River Delta area, one sub-area in East China, had the highest concentrations of NAs, where the average NDMA concentrations in the finished and tap water were 27 and 28.5 ng/L, respectively, and the average NDMA FP in the source water was 204 ng/L. NA control may be achieved by applying breakpoint free chlorination and/or advanced treatment of ozone - granular activated carbon process to remove the NA precursors before disinfection.


Assuntos
Água Potável , Nitrosaminas , China , Dimetilnitrosamina , Desinfecção , Poluentes Químicos da Água , Purificação da Água , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA