Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Chemistry ; 30(3): e202302350, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37855054

RESUMO

For a potential application of FK506 in the treatment of acute kidney failure only the FKBP12 binding capability of the compound is required, while the immunosuppressive activity via calcineurin binding is considered as a likely risk to the patients. The methoxy groups at C13 and C15 are thought to have significant influence on the immunosuppressive activity of the molecule. Consequently, FK506 analogs with different functionalities at C13 and C15 were generated by targeted CRISPR editing of the AT domains in module 7 and 8 of the biosynthetic assembly line in Streptomyces tsukubaensis. In addition, the corresponding FK520 (C21 ethyl derivative of FK506) analogs could be obtained by media adjustments. The compounds were tested for their bioactivity in regards to FKBP12 binding, BMP potentiation and calcineurin sparing. 15-desmethoxy FK506 was superior to the other tested analogs as it did not inhibit calcineurin but retained high potency towards FKBP12 binding and BMP potentiation.


Assuntos
Calcineurina , Streptomyces , Tacrolimo , Humanos , Tacrolimo/farmacologia , Tacrolimo/metabolismo , Calcineurina/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Imunossupressores/farmacologia , Imunossupressores/química
2.
Chimia (Aarau) ; 75(7): 620-633, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34523403

RESUMO

Natural Products (NPs) are molecular' special equipment ' that impart survival benefits on their producers in nature. Due to their evolved functions to modulate biology these privileged metabolites are substantially represented in the drug market and are continuing to contribute to the discovery of innovative medicines such as the recently approved semi-synthetic derivative of the bacterial alkaloid staurosporin in oncology indications. The innovation of low molecular weight compounds in modern drug discovery is built on rapid progress in chemical, molecular biological, pharmacological and data sciences, which together provide a rich understanding of disease-driving molecular interactions and how to modulate them. NPs investigated in these pharmaceutical research areas create new perspectives on their chemical and biological features and thereby new chances to advance medical research. New methods in analytical chemistry linked with searchable NP-databases solved the issue of reisolation and enabled targeted and efficient access to novel molecules from nature. Cheminformatics delivers high resolution descriptions of NPs and explores the substructures that systematically map NP-chemical space by sp³-enriched fragments. Whole genome sequencing has revealed the existence of collocated gene clusters that form larger functional entities together with proximate resistance factors thus avoiding self-inhibition of the encoded metabolites. The analysis of bacterial and fungal genes provides tantalizing glimpses of new compound-target pairs of therapeutic value. Furthermore, a dedicated investigation of structurally unique, selectively active NPs in chemical biology demonstrates their extraordinary power as shuttles between new biological target spaces of pharmaceutical relevance.


Assuntos
Produtos Biológicos , Bases de Dados Factuais , Descoberta de Drogas , Indústria Farmacêutica
3.
Antimicrob Agents Chemother ; 65(9): e0097821, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34228543

RESUMO

Rifampicin is an effective drug for treating tuberculosis (TB) but is not used to treat Mycobacterium abscessus infections due to poor in vitro activity. While rifabutin, another rifamycin, has better anti-M. abscessus activity, its activity is far from the nanomolar potencies of rifamycins against Mycobacterium tuberculosis. Here, we asked (i) why is rifabutin more active against M. abscessus than rifampicin, and (ii) why is rifabutin's anti-M. abscessus activity poorer than its anti-TB activity? Comparative analysis of naphthoquinone- versus naphthohydroquinone-containing rifamycins suggested that the improved activity of rifabutin over rifampicin is linked to its less readily oxidizable naphthoquinone core. Although rifabutin is resistant to bacterial oxidation, metabolite and genetic analyses showed that this rifamycin is metabolized by the ADP-ribosyltransferase ArrMab like rifampicin, preventing it from achieving the nanomolar activity that it displays against M. tuberculosis. Based on the identified dual mechanism of intrinsic rifamycin resistance, we hypothesized that rifamycins more potent than rifabutin should contain the molecule's naphthoquinone core plus a modification that blocks ADP-ribosylation at its C-23. To test these predictions, we performed a blinded screen of a diverse collection of 189 rifamycins and identified two molecules more potent than rifabutin. As predicted, these compounds contained both a more oxidatively resistant naphthoquinone core and C-25 modifications that blocked ADP-ribosylation. Together, this work revealed dual bacterial metabolism as the mechanism of intrinsic resistance of M. abscessus to rifamycins and provides proof of concept for the repositioning of rifamycins for M. abscessus disease by developing derivatives that resist both bacterial oxidation and ADP-ribosylation.


Assuntos
Mycobacterium abscessus , Rifamicinas , ADP-Ribosilação , Testes de Sensibilidade Microbiana , Rifabutina/farmacologia , Rifamicinas/farmacologia
4.
Cell Chem Biol ; 28(9): 1271-1282.e12, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-33894161

RESUMO

Acute kidney injury (AKI) is a life-threatening disease with no known curative or preventive therapies. Data from multiple animal models and human studies have linked dysregulation of bone morphogenetic protein (BMP) signaling to AKI. Small molecules that potentiate endogenous BMP signaling should have a beneficial effect in AKI. We performed a high-throughput phenotypic screen and identified a series of FK506 analogs that act as potent BMP potentiators by sequestering FKBP12 from BMP type I receptors. We further showed that calcineurin inhibition was not required for this activity. We identified a calcineurin-sparing FK506 analog oxtFK through late-stage functionalization and structure-guided design. OxtFK demonstrated an improved safety profile in vivo relative to FK506. OxtFK stimulated BMP signaling in vitro and in vivo and protected the kidneys in an AKI mouse model, making it a promising candidate for future development as a first-in-class therapeutic for diseases with dysregulated BMP signaling.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Proteínas Morfogenéticas Ósseas/metabolismo , Tacrolimo/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fenótipo , Tacrolimo/análogos & derivados , Tacrolimo/química
5.
Cell Chem Biol ; 28(10): 1407-1419.e6, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33794192

RESUMO

Three limonoid natural products with selective anti-proliferative activity against BRAF(V600E) and NRAS(Q61K)-mutation-dependent melanoma cell lines were identified. Differential transcriptome analysis revealed dependency of compound activity on expression of the mitochondrial cytochrome P450 oxidase CYP27A1, a transcriptional target of melanogenesis-associated transcription factor (MITF). We determined that CYP27A1 activity is necessary for the generation of a reactive metabolite that proceeds to inhibit cellular proliferation. A genome-wide small interfering RNA screen in combination with chemical proteomics experiments revealed gene-drug functional epistasis, suggesting that these compounds target mitochondrial biogenesis and inhibit tumor bioenergetics through a covalent mechanism. Our work suggests a strategy for melanoma-specific targeting by exploiting the expression of MITF target gene CYP27A1 and inhibiting mitochondrial oxidative phosphorylation in BRAF mutant melanomas.


Assuntos
Colestanotriol 26-Mono-Oxigenase/metabolismo , Limoninas/farmacologia , Mitocôndrias/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colestanotriol 26-Mono-Oxigenase/antagonistas & inibidores , Colestanotriol 26-Mono-Oxigenase/genética , Humanos , Limoninas/química , Limoninas/metabolismo , Limoninas/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
6.
J Med Chem ; 63(23): 14425-14447, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33140646

RESUMO

This article summarizes the evolution of the screening deck at the Novartis Institutes for BioMedical Research (NIBR). Historically, the screening deck was an assembly of all available compounds. In 2015, we designed a first deck to facilitate access to diverse subsets with optimized properties. We allocated the compounds as plated subsets on a 2D grid with property based ranking in one dimension and increasing structural redundancy in the other. The learnings from the 2015 screening deck were applied to the design of a next generation in 2019. We found that using traditional leadlikeness criteria (mainly MW, clogP) reduces the hit rates of attractive chemical starting points in subset screening. Consequently, the 2019 deck relies on solubility and permeability to select preferred compounds. The 2019 design also uses NIBR's experimental assay data and inferred biological activity profiles in addition to structural diversity to define redundancy across the compound sets.


Assuntos
Bibliotecas de Moléculas Pequenas/química , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/farmacologia
7.
J Clin Invest ; 130(7): 3848-3864, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315290

RESUMO

Cancer cells can develop a strong addiction to discrete molecular regulators, which control the aberrant gene expression programs that drive and maintain the cancer phenotype. Here, we report the identification of the RNA-binding protein HuR/ELAVL1 as a central oncogenic driver for malignant peripheral nerve sheath tumors (MPNSTs), which are highly aggressive sarcomas that originate from cells of the Schwann cell lineage. HuR was found to be highly elevated and bound to a multitude of cancer-associated transcripts in human MPNST samples. Accordingly, genetic and pharmacological inhibition of HuR had potent cytostatic and cytotoxic effects on tumor growth, and strongly suppressed metastatic capacity in vivo. Importantly, we linked the profound tumorigenic function of HuR to its ability to simultaneously regulate multiple essential oncogenic pathways in MPNST cells, including the Wnt/ß-catenin, YAP/TAZ, RB/E2F, and BET pathways, which converge on key transcriptional networks. Given the exceptional dependency of MPNST cells on HuR for survival, proliferation, and dissemination, we propose that HuR represents a promising therapeutic target for MPNST treatment.


Assuntos
Carcinogênese/metabolismo , Proliferação de Células , Proteína Semelhante a ELAV 1/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de Bainha Neural/metabolismo , Transdução de Sinais , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Proteína Semelhante a ELAV 1/genética , Humanos , Camundongos , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia
8.
J Biol Chem ; 293(52): 19982-19995, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30327433

RESUMO

Actinobacteria possess a great wealth of pathways for production of bioactive compounds. Following advances in genome mining, dozens of natural product (NP) gene clusters are routinely found in each actinobacterial genome; however, the modus operandi of this large arsenal is poorly understood. During investigations of the secondary metabolome of Streptomyces rapamycinicus, the producer of rapamycin, we observed accumulation of two compounds never before reported from this organism. Structural elucidation revealed actinoplanic acid A and its demethyl analogue. Actinoplanic acids (APLs) are potent inhibitors of Ras farnesyltransferase and therefore represent bioactive compounds of medicinal interest. Supported with the unique structure of these polyketides and using genome mining, we identified a gene cluster responsible for their biosynthesis in S. rapamycinicus Based on experimental evidence and genetic organization of the cluster, we propose a stepwise biosynthesis of APL, the first bacterial example of a pathway incorporating the rare tricarballylic moiety into an NP. Although phylogenetically distant, the pathway shares some of the biosynthetic principles with the mycotoxins fumonisins. Namely, the core polyketide is acylated with the tricarballylate by an atypical nonribosomal peptide synthetase-catalyzed ester formation. Finally, motivated by the conserved colocalization of the rapamycin and APL pathway clusters in S. rapamycinicus and all other rapamycin-producing actinobacteria, we confirmed a strong synergism of these compounds in antifungal assays. Mining for such evolutionarily conserved coharboring of pathways would likely reveal further examples of NP sets, attacking multiple targets on the same foe. These could then serve as a guide for development of new combination therapies.


Assuntos
Vias Biossintéticas , Lactonas/metabolismo , Família Multigênica , Policetídeos/metabolismo , Sirolimo/metabolismo , Streptomyces/metabolismo , Metilação , Metabolismo Secundário , Streptomyces/genética
9.
Nat Chem Biol ; 13(12): 1239-1244, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28991239

RESUMO

Tim17 and Tim23 are the main subunits of the TIM23 complex, one of the two major essential mitochondrial inner-membrane protein translocon machineries (TIMs). No chemical probes that specifically inhibit TIM23-dependent protein import were known to exist. Here we show that the natural product stendomycin, produced by Streptomyces hygroscopicus, is a potent and specific inhibitor of the TIM23 complex in yeast and mammalian cells. Furthermore, stendomycin-mediated blockage of the TIM23 complex does not alter normal processing of the major regulatory mitophagy kinase PINK1, but TIM23 is required to stabilize PINK1 on the outside of mitochondria to initiate mitophagy upon membrane depolarization.


Assuntos
Proteínas Mitocondriais/metabolismo , Peptídeos/farmacologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Peptídeos Catiônicos Antimicrobianos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Estrutura Molecular , Peptídeos/química , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Cell Host Microbe ; 22(1): 25-37.e6, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28704649

RESUMO

Host factors in the intestine help select for bacteria that promote health. Certain commensals can utilize mucins as an energy source, thus promoting their colonization. However, health conditions such as inflammatory bowel disease (IBD) are associated with a reduced mucus layer, potentially leading to dysbiosis associated with this disease. We characterize the capability of commensal species to cleave and transport mucin-associated monosaccharides and identify several Clostridiales members that utilize intestinal mucins. One such mucin utilizer, Peptostreptococcus russellii, reduces susceptibility to epithelial injury in mice. Several Peptostreptococcus species contain a gene cluster enabling production of the tryptophan metabolite indoleacrylic acid (IA), which promotes intestinal epithelial barrier function and mitigates inflammatory responses. Furthermore, metagenomic analysis of human stool samples reveals that the genetic capability of microbes to utilize mucins and metabolize tryptophan is diminished in IBD patients. Our data suggest that stimulating IA production could promote anti-inflammatory responses and have therapeutic benefits.


Assuntos
Indóis/metabolismo , Indóis/farmacologia , Inflamação/metabolismo , Mucosa Intestinal/microbiologia , Peptostreptococcus/metabolismo , Simbiose , Animais , Anti-Inflamatórios/farmacologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Colo/microbiologia , Colo/patologia , Citocinas/metabolismo , Disbiose/metabolismo , Humanos , Doenças Inflamatórias Intestinais , Mucosa Intestinal/lesões , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Camundongos , Mucina-2/genética , Mucina-2/metabolismo , Mucinas/genética , Mucinas/metabolismo , Organoides
11.
J Med Chem ; 59(14): 6920-8, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27355833

RESUMO

Synthetic studies of the antimicrobial secondary metabolite thiomuracin A (1) provided access to analogues in the Northern region (C2-C10). Selective hydrolysis of the C10 amide of lead compound 2 and subsequent derivatization led to novel carbon- and nitrogen-linked analogues (e.g., 3) which improved antibacterial potency across a panel of Gram-positive organisms. In addition, congeners with improved physicochemical properties were identified which proved efficacious in murine sepsis and hamster C. difficile models of disease. Optimal efficacy in the hamster model of C. difficile was achieved with compounds that possessed both potent antibacterial activity and high aqueous solubility.


Assuntos
Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Tiazóis/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Cricetinae , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Solubilidade , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
12.
Nat Chem Biol ; 11(12): 958-66, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26479441

RESUMO

High-throughput screening (HTS) is an integral part of early drug discovery. Herein, we focused on those small molecules in a screening collection that have never shown biological activity despite having been exhaustively tested in HTS assays. These compounds are referred to as 'dark chemical matter' (DCM). We quantified DCM, validated it in quality control experiments, described its physicochemical properties and mapped it into chemical space. Through analysis of prospective reporter-gene assay, gene expression and yeast chemogenomics experiments, we evaluated the potential of DCM to show biological activity in future screens. We demonstrated that, despite the apparent lack of activity, occasionally these compounds can result in potent hits with unique activity and clean safety profiles, which makes them valuable starting points for lead optimization efforts. Among the identified DCM hits was a new antifungal chemotype with strong activity against the pathogen Cryptococcus neoformans but little activity at targets relevant to human safety.


Assuntos
Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Antifúngicos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
13.
Nat Commun ; 6: 8613, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26456460

RESUMO

FR171456 is a natural product with cholesterol-lowering properties in animal models, but its molecular target is unknown, which hinders further drug development. Here we show that FR171456 specifically targets the sterol-4-alpha-carboxylate-3-dehydrogenase (Saccharomyces cerevisiae--Erg26p, Homo sapiens--NSDHL (NAD(P) dependent steroid dehydrogenase-like)), an essential enzyme in the ergosterol/cholesterol biosynthesis pathway. FR171456 significantly alters the levels of cholesterol pathway intermediates in human and yeast cells. Genome-wide yeast haploinsufficiency profiling experiments highlight the erg26/ERG26 strain, and multiple mutations in ERG26 confer resistance to FR171456 in growth and enzyme assays. Some of these ERG26 mutations likely alter Erg26 binding to FR171456, based on a model of Erg26. Finally, we show that FR171456 inhibits an artificial Hepatitis C viral replicon, and has broad antifungal activity, suggesting potential additional utility as an anti-infective. The discovery of the target and binding site of FR171456 within the target will aid further development of this compound.


Assuntos
3-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Antifúngicos/química , Colesterol/análogos & derivados , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/genética , 3-Hidroxiesteroide Desidrogenases/genética , Candida albicans , Colesterol/química , Farmacorresistência Fúngica/genética , Ergosterol/biossíntese , Mutação , Proteínas de Saccharomyces cerevisiae/genética
14.
Angew Chem Int Ed Engl ; 54(35): 10149-54, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26179970

RESUMO

Cultivation of myxobacteria of the Nannocystis genus led to the isolation and structure elucidation of a class of novel cyclic lactone inhibitors of elongation factor 1. Whole genome sequence analysis and annotation enabled identification of the putative biosynthetic cluster and synthesis process. In biological assays the compounds displayed anti-fungal and cytotoxic activity. Combined genetic and proteomic approaches identified the eukaryotic translation elongation factor 1α (EF-1α) as the primary target for this compound class. Nannocystin A (1) displayed differential activity across various cancer cell lines and EEF1A1 expression levels appear to be the main differentiating factor. Biochemical and genetic evidence support an overlapping binding site of 1 with the anti-cancer compound didemnin B on EF-1α. This myxobacterial chemotype thus offers an interesting starting point for further investigations of the potential of therapeutics targeting elongation factor 1.


Assuntos
Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Myxococcales/fisiologia , Neoplasias/patologia , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , Antifúngicos/química , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Genômica/métodos , Humanos , Compostos Macrocíclicos/química , Estrutura Molecular , Neoplasias/tratamento farmacológico , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Proteômica/métodos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
PLoS One ; 10(6): e0127498, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098886

RESUMO

Englerin A is a structurally unique natural product reported to selectively inhibit growth of renal cell carcinoma cell lines. A large scale phenotypic cell profiling experiment (CLiP) of englerin A on ¬over 500 well characterized cancer cell lines showed that englerin A inhibits growth of a subset of tumor cell lines from many lineages, not just renal cell carcinomas. Expression of the TRPC4 cation channel was the cell line feature that best correlated with sensitivity to englerin A, suggesting the hypothesis that TRPC4 is the efficacy target for englerin A. Genetic experiments demonstrate that TRPC4 expression is both necessary and sufficient for englerin A induced growth inhibition. Englerin A induces calcium influx and membrane depolarization in cells expressing high levels of TRPC4 or its close ortholog TRPC5. Electrophysiology experiments confirmed that englerin A is a TRPC4 agonist. Both the englerin A induced current and the englerin A induced growth inhibition can be blocked by the TRPC4/C5 inhibitor ML204. These experiments confirm that activation of TRPC4/C5 channels inhibits tumor cell line proliferation and confirms the TRPC4 target hypothesis generated by the cell line profiling. In selectivity assays englerin A weakly inhibits TRPA1, TRPV3/V4, and TRPM8 which suggests that englerin A may bind a common feature of TRP ion channels. In vivo experiments show that englerin A is lethal in rodents near doses needed to activate the TRPC4 channel. This toxicity suggests that englerin A itself is probably unsuitable for further drug development. However, since englerin A can be synthesized in the laboratory, it may be a useful chemical starting point to identify novel modulators of other TRP family channels.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sesquiterpenos de Guaiano/farmacologia , Canais de Cátion TRPC/agonistas , Animais , Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Células HEK293 , Humanos , Indóis/farmacologia , Neoplasias Renais/tratamento farmacológico , Camundongos , Camundongos Nus , Piperidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Ratos , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Transfecção
16.
J Cell Sci ; 128(6): 1217-29, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25616894

RESUMO

A new cyclic decadepsipeptide was isolated from Chaetosphaeria tulasneorum with potent bioactivity on mammalian and yeast cells. Chemogenomic profiling in S. cerevisiae indicated that the Sec61 translocon complex, the machinery for protein translocation and membrane insertion at the endoplasmic reticulum, is the target. The profiles were similar to those of cyclic heptadepsipeptides of a distinct chemotype (including HUN-7293 and cotransin) that had previously been shown to inhibit cotranslational translocation at the mammalian Sec61 translocon. Unbiased, genome-wide mutagenesis followed by full-genome sequencing in both fungal and mammalian cells identified dominant mutations in Sec61p (yeast) or Sec61α1 (mammals) that conferred resistance. Most, but not all, of these mutations affected inhibition by both chemotypes, despite an absence of structural similarity. Biochemical analysis confirmed inhibition of protein translocation into the endoplasmic reticulum of both co- and post-translationally translocated substrates by both chemotypes, demonstrating a mechanism independent of a translating ribosome. Most interestingly, both chemotypes were found to also inhibit SecYEG, the bacterial Sec61 translocon homolog. We suggest 'decatransin' as the name for this new decadepsipeptide translocation inhibitor.


Assuntos
Produtos Biológicos/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Ascomicetos/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HCT116 , Humanos , Proteínas de Membrana/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Polimorfismo de Nucleotídeo Único/genética , Canais de Translocação SEC , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
17.
Microbiol Res ; 169(2-3): 107-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24360837

RESUMO

Due to evolutionary conservation of biology, experimental knowledge captured from genetic studies in eukaryotic model organisms provides insight into human cellular pathways and ultimately physiology. Yeast chemogenomic profiling is a powerful approach for annotating cellular responses to small molecules. Using an optimized platform, we provide the relative sensitivities of the heterozygous and homozygous deletion collections for nearly 1800 biologically active compounds. The data quality enables unique insights into pathways that are sensitive and resistant to a given perturbation, as demonstrated with both known and novel compounds. We present examples of novel compounds that inhibit the therapeutically relevant fatty acid synthase and desaturase (Fas1p and Ole1p), and demonstrate how the individual profiles facilitate hypothesis-driven experiments to delineate compound mechanism of action. Importantly, the scale and diversity of tested compounds yields a dataset where the number of modulated pathways approaches saturation. This resource can be used to map novel biological connections, and also identify functions for unannotated genes. We validated hypotheses generated by global two-way hierarchical clustering of profiles for (i) novel compounds with a similar mechanism of action acting upon microtubules or vacuolar ATPases, and (ii) an un-annotated ORF, YIL060w, that plays a role in respiration in the mitochondria. Finally, we identify and characterize background mutations in the widely used yeast deletion collection which should improve the interpretation of past and future screens throughout the community. This comprehensive resource of cellular responses enables the expansion of our understanding of eukaryotic pathway biology.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Antifúngicos/farmacologia , Vias Biossintéticas , Farmacorresistência Fúngica , Regulação Fúngica da Expressão Gênica , Ensaios de Triagem em Larga Escala , Dados de Sequência Molecular , Filogenia , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
ACS Chem Biol ; 8(5): 866-70, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23441826

RESUMO

Hematopoietic stem cells (HSCs) are the progenitor cells that give rise to all blood cells. The ability to control HSC differentiation has the potential to improve the success of bone marrow transplants and the production of functional blood cells ex vivo. Here we performed an unbiased screen using primary human CD34(+) hematopoietic stem and progenitor cells (HSPCs) to identify natural products that selectively control their differentiation. We identified a plant-derived natural product, eupalinilide E, that promotes the ex vivo expansion of HSPCs and hinders the in vitro development of erythrocytes. This activity was additive with aryl hydrocarbon receptor (AhR) antagonists, which are also known to expand HSCs and currently in clinical development. These findings reveal a new activity for eupalinilide E, and suggest that it may be a useful tool to probe the mechanisms of hematopoiesis and improve the ex vivo production of progenitors for therapeutic purposes.


Assuntos
Eritropoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Sesquiterpenos/farmacologia , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias/métodos , Meios de Cultura/química , Meios de Cultura/farmacologia , Dioxinas/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , NF-kappa B/metabolismo , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores da Transferrina/metabolismo , Sesquiterpenos/química
19.
PLoS One ; 7(9): e42657, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970117

RESUMO

Argyrins, produced by myxobacteria and actinomycetes, are cyclic octapeptides with antibacterial and antitumor activity. Here, we identify elongation factor G (EF-G) as the cellular target of argyrin B in bacteria, via resistant mutant selection and whole genome sequencing, biophysical binding studies and crystallography. Argyrin B binds a novel allosteric pocket in EF-G, distinct from the known EF-G inhibitor antibiotic fusidic acid, revealing a new mode of protein synthesis inhibition. In eukaryotic cells, argyrin B was found to target mitochondrial elongation factor G1 (EF-G1), the closest homologue of bacterial EF-G. By blocking mitochondrial translation, argyrin B depletes electron transport components and inhibits the growth of yeast and tumor cells. Further supporting direct inhibition of EF-G1, expression of an argyrin B-binding deficient EF-G1 L693Q variant partially rescued argyrin B-sensitivity in tumor cells. In summary, we show that argyrin B is an antibacterial and cytotoxic agent that inhibits the evolutionarily conserved target EF-G, blocking protein synthesis in bacteria and mitochondrial translation in yeast and mammalian cells.


Assuntos
Oligopeptídeos/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Animais , Burkholderia/efeitos dos fármacos , Linhagem Celular Tumoral , Sequência Conservada , Cristalografia por Raios X , Humanos , Mamíferos , Testes de Sensibilidade Microbiana , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Fator G para Elongação de Peptídeos/antagonistas & inibidores , Fator G para Elongação de Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
20.
Chem Biol ; 19(8): 994-1000, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22921066

RESUMO

To identify small molecules that selectively control hematopoietic stem cell differentiation, we performed an unbiased screen using primary human CD34(+) cells. We identified a plant-derived natural product, euphohelioscopin A, capable of selectively differentiating CD34(+) cells down the granulocyte/monocytic lineage. Euphohelioscopin A also inhibits proliferation and induces differentiation of the myeloid leukemia cell lines THP-1 and HL-60. Mechanistic studies revealed that euphohelioscopin A is an activator of protein kinase C (PKC), and that the promonocytic effects of this natural product are mediated by PKC activation. In addition to shedding insights into normal hematopoiesis, this work may ultimately facilitate the application of stem cell therapies to a host of myeloid dysfunctions.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diterpenos/farmacologia , Proteína Quinase C/metabolismo , Antígenos CD34/metabolismo , Linhagem da Célula , Células Cultivadas , Diterpenos/química , Granulócitos/citologia , Células HEK293 , Células HL-60 , Células HeLa , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Indóis/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Maleimidas/farmacologia , Proteína Quinase C/química , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA