Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39075839

RESUMO

Soil microbiota are important components of healthy ecosystems. Greater consideration of soil microbiota in the restoration of biodiverse, functional, and resilient ecosystems is required to address the twin global crises of biodiversity decline and climate change. In this review, we discuss available and emerging practical applications of soil microbiota into (i) restoration planning, (ii) direct interventions for shaping soil biodiversity, and (iii) strategies for monitoring and predicting restoration trajectories. We show how better planning of restoration activities to account for soil microbiota can help improve progress towards restoration targets. We show how planning to embed soil microbiota experiments into restoration projects will permit a more rigorous assessment of the effectiveness of different restoration methods, especially when complemented by statistical modelling approaches that capitalise on existing data sets to improve causal understandings and prioritise research strategies where appropriate. In addition to recovering belowground microbiota, restoration strategies that include soil microbiota can improve the resilience of whole ecosystems. Fundamentally, restoration planning should identify appropriate reference target ecosystem attributes and - from the perspective of soil microbiota - comprehensibly consider potential physical, chemical and biological influences on recovery. We identify that inoculating ecologically appropriate soil microbiota into degraded environments can support a range of restoration interventions (e.g. targeted, broad-spectrum and cultured inoculations) with promising results. Such inoculations however are currently underutilised and knowledge gaps persist surrounding successful establishment in light of community dynamics, including priority effects and community coalescence. We show how the ecological trajectories of restoration sites can be assessed by characterising microbial diversity, composition, and functions in the soil. Ultimately, we highlight practical ways to apply the soil microbiota toolbox across the planning, intervention, and monitoring stages of ecosystem restoration and address persistent open questions at each stage. With continued collaborations between researchers and practitioners to address knowledge gaps, these approaches can improve current restoration practices and ecological outcomes.

2.
Conserv Physiol ; 12(1): coae018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715928

RESUMO

Ascertaining the traits important for acclimation and adaptation is a critical first step to predicting the fate of populations and species facing rapid environmental change. One of the primary challenges in trait-based ecology is understanding the patterns and processes underpinning functional trait variation in plants. Studying intraspecific variation of functional traits across latitudinal gradients offers an excellent in situ approach to assess associations with environmental factors, which naturally covary along these spatial scales such as the local climate and soil profiles. Therefore, we examined how climatic and edaphic conditions varied across a ~160-km latitudinal gradient to understand how these conditions were associated with the physiological performance and morphological expression within five spatially distinct populations spanning the latitudinal distribution of a model species (Stylidium hispidum Lindl.). Northern populations had patterns of trait means reflecting water conservation strategies that included reduced gas exchange, rosette size and floral investment compared to the southern populations. Redundancy analysis, together with variance partitioning, showed that climate factors accounted for a significantly greater portion of the weighted variance in plant trait data (22.1%; adjusted R2 = 0.192) than edaphic factors (9.3%; adjusted R2 = 0.08). Disentangling such independent and interactive abiotic drivers of functional trait variation will deliver key insights into the mechanisms underpinning local adaptation and population-level responses to current and future climates.

3.
Front Plant Sci ; 15: 1309956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344183

RESUMO

Introduction: Ocean warming combined with extreme climatic events, such as marine heatwaves and flash flooding events, threaten seagrasses globally. How seagrasses cope with these challenges is uncertain, particularly for range-edge populations of species such as Posidonia australis in Shark Bay, Western Australia. Analyzing gene expression while manipulating multiple stressors provides insight into the genetic response and resilience of seagrasses to climate change. We conducted a gene expression study on a polyploid clone of P. australis during an 18-week mesocosm experiment to assess the responses to single and combined future climate change-associated stressors. Methods: Plants were exposed to (1) future ocean warming temperature (baseline +1.5°C) followed by a simulated marine heat wave (baseline +5.5°C), (2) light deprivation simulating observed marine heatwave driven turbidity (95% shade) at baseline temperatures, or (3) both stressors simultaneously. Basal leaf meristems were sampled for gene expression analysis using RNA-seq at four time points during the experiment. Weighted gene co-expression network analysis, GO term enrichment, and KEGG pathway enrichment analyses were used to identify stress responses. Results: Shaded plants showed specific gene enrichment for shade avoidance (programmed cell death) after three weeks of stress, and before any heated tanks showed a specific heat response. Shaded plants were positively correlated with programmed cell death and stress-related processes at the end of the experiment. Once ocean warming temperatures (+1.5°C) were in effect, gene enrichment for heat stress (e.g., ROS scavenging and polyamine metabolism) was present. Vitamin B processes, RNA polymerase II processes. and light-related meristematic phase changes were expressed with the addition of simulated MHW. Heated plants showed meristematic growth signatures as well as trehalose and salicylic acid metabolism. Brassinosteroid-related processes were significantly enriched in all stressor treatments at all time points, except for the isolated heat-stressed plants three weeks after stressor initiation. Discussion: Gene expression responses to the interaction between heat waves and turbidity-induced light reduction support the observed geographical scale mortality in seagrasses observed for P. australis in Shark Bay, suggesting that even this giant polyploid clone will be negatively impacted by more extreme climate change projections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA