Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Endocrinology ; 165(11)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39298675

RESUMO

Extracellular vesicles (EVs) serve as crucial mediators of cell-to-cell communication in normal physiology as well as in diseased states; they have been largely studied in regard to their role in cancer progression. However, the mechanisms by which their biogenesis and secretion are regulated by metabolic or endocrine factors remain unknown. Here, we delineate a mechanism by which EV secretion is regulated by a cholesterol metabolite, 27-hydroxycholesterol (27HC), where treatment of myeloid immune cells (RAW 264.7 and J774A.1) with 27HC impairs lysosomal homeostasis, leading to shunting of multivesicular bodies (MVBs) away from lysosomal degradation, toward secretion as EVs. This altered lysosomal function is likely caused by mitochondrial dysfunction and subsequent increase in reactive oxygen species (ROS). Interestingly, cotreatment with a mitochondria-targeted antioxidant rescued the lysosomal impairment and attenuated the 27HC-mediated increase in EV secretion. Overall, our findings establish how a cholesterol metabolite regulates EV secretion and paves the way for the development of strategies to regulate cancer progression by controlling EV secretion.


Assuntos
Vesículas Extracelulares , Hidroxicolesteróis , Lisossomos , Espécies Reativas de Oxigênio , Hidroxicolesteróis/farmacologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Células RAW 264.7 , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular
2.
bioRxiv ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39131340

RESUMO

Small extracellular vesicles (sEVs) are emerging as critical mediators of intercellular communication in the tumor microenvironment (TME). Here, we investigate the mechanisms by which sEVs derived from neutrophils treated with the cholesterol metabolite, 27-hydroxycholesterol (27HC), influence breast cancer progression. sEVs released from 27HC treated neutrophils enhance epithelial-mesenchymal transition (EMT) and stem-like properties in breast cancer cells, resulting in loss of adherence, increased migratory capacity and resistance to cytotoxic chemotherapy. Decreased microRNAs (miRs) within the sEVs resulted in activation of the WNT/ß-catenin signaling pathway in recipient cells and suggest that this may be a predominant pathway for stem-like phenotype and EMT. Our findings underscore a novel mechanism by which 27HC-modulated neutrophils contribute to breast cancer pathophysiology through EV-mediated intercellular communication, suggesting potential therapeutic targets in cancer treatment.

3.
Cancer Lett ; 597: 217042, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38908543

RESUMO

Although survival from breast cancer has dramatically increased, many will develop recurrent, metastatic disease. Unfortunately, survival for this stage of disease remains very low. Activating the immune system has incredible promise since it has the potential to be curative. However, immune checkpoint blockade (ICB) which works through T cells has been largely disappointing for metastatic breast cancer. One reason for this is a suppressive myeloid immune compartment that is unaffected by ICB. Cholesterol metabolism and proteins involved in cholesterol homeostasis play important regulatory roles in myeloid cells. Here, we demonstrate that NR0B2, a nuclear receptor involved in negative feedback of cholesterol metabolism, works in several myeloid cell types to impair subsequent expansion of regulatory T cells (Tregs); Tregs being a subset known to be highly immune suppressive and associated with poor therapeutic response. Within myeloid cells, NR0B2 serves to decrease many aspects of the inflammasome, ultimately resulting in decreased IL1ß; IL1ß driving Treg expansion. Importantly, mice lacking NR0B2 exhibit accelerated tumor growth. Thus, NR0B2 represents an important node in myeloid cells dictating ensuing Treg expansion and tumor growth, thereby representing a novel therapeutic target to re-educate these cells, having impact across different solid tumor types. Indeed, a paper co-published in this issue demonstrates the therapeutic utility of targeting NR0B2.


Assuntos
Neoplasias da Mama , Progressão da Doença , Células Mieloides , Linfócitos T Reguladores , Linfócitos T Reguladores/imunologia , Animais , Feminino , Camundongos , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Humanos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Camundongos Knockout , Interleucina-1beta/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Inflamassomos/metabolismo , Inflamassomos/imunologia
4.
Cancer Lett ; 597: 217086, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38944231

RESUMO

Immune checkpoint blockade (ICB) has had limited utility in several solid tumors such as breast cancer, a major cause of cancer-related mortality in women. Therefore, there is considerable interest in alternate strategies to promote an anti-cancer immune response. A paper co-published in this issue describes how NR0B2, a protein involved in cholesterol homeostasis, functions within myeloid immune cells to modulate the inflammasome and reduce the expansion of immune-suppressive regulatory T cells (Treg). Here, we develop NR0B2 as a potential therapeutic target. NR0B2 in tumors is associated with improved survival for several cancer types including breast. Importantly, NR0B2 expression is also prognostic of ICB success. Within breast tumors, NR0B2 expression is inversely associated with FOXP3, a marker of Tregs. While a described agonist (DSHN) had some efficacy, it required high doses and long treatment times. Therefore, we designed and screened several derivatives. A methyl ester derivative (DSHN-OMe) emerged as superior in terms of (1) cellular uptake, (2) ability to regulate expected expression of genes, (3) suppression of Treg expansion using in vitro co-culture systems, and (4) efficacy against the growth of primary and metastatic tumors. This work identifies NR0B2 as a target to re-educate myeloid immune cells and a novel ligand with significant anti-tumor efficacy in preclinical models.


Assuntos
Células Mieloides , Linfócitos T Reguladores , Humanos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Células Mieloides/efeitos dos fármacos , Feminino , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Camundongos , Linhagem Celular Tumoral , Microambiente Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
5.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746134

RESUMO

Extracellular vesicles (EVs) serve as crucial mediators of cell-to-cell communication in normal physiology as well as in diseased states, and have been largely studied in regard to their role in cancer progression. However, the mechanisms by which their biogenesis and secretion are regulated by metabolic or endocrine factors remain unknown. Here, we delineate a mechanism by which EV secretion is regulated by a cholesterol metabolite, 27-Hydroxycholesterol (27HC), where treatment of myeloid immune cells (RAW 264.7 and J774A.1) with 27HC impairs lysosomal homeostasis, leading to shunting of multivesicular bodies (MVBs) away from lysosomal degradation, towards secretion as EVs. This impairment of lysosomal function is caused by mitochondrial dysfunction and subsequent increase in reactive oxygen species (ROS). Interestingly, cotreatment with a mitochondria-targeted antioxidant rescued the lysosomal impairment and attenuated the 27HC-mediated increase in EV secretion. Overall, our findings establish how a cholesterol metabolite regulates EV secretion and paves the way for the development of strategies to regulate cancer progression by controlling EV secretion.

6.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645737

RESUMO

Immune checkpoint blockade (ICB) has revolutionized cancer therapy but has had limited utility in several solid tumors such as breast cancer, a major cause of cancer-related mortality in women. Therefore, there is considerable interest in alternate strategies to promote an anti-cancer immune response. We demonstrate that NR0B2, a protein involved in cholesterol homeostasis, functions within myeloid immune cells to modulate the NLRP3 inflammasome and reduce the expansion of immune-suppressive regulatory T cells (Treg). Loss of NR0B2 increased mammary tumor growth and metastasis. Small molecule agonists, including one developed here, reduced Treg expansion, reduced metastatic growth and improved the efficacy of ICB. This work identifies NR0B2 as a target to re-educate myeloid immune cells providing proof-of-principle that this cholesterol-homeostasis axis may have utility in enhancing ICB.

7.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166515, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932893

RESUMO

Development of targeted therapies will be a critical step towards reducing the mortality associated with triple-negative breast cancer (TNBC). To achieve this, we searched for targets that met three criteria: (1) pharmacologically targetable, (2) expressed in TNBC, and (3) expression is prognostic in TNBC patients. Since nuclear receptors have a well-defined ligand-binding domain and are thus highly amenable to small-molecule intervention, we focused on this class of protein. Our analysis identified TLX (NR2E1) as a candidate. Specifically, elevated tumoral TLX expression was associated with prolonged recurrence-free survival and overall survival for breast cancer patients with either estrogen receptor alpha (ERα)-negative or basal-like tumors. Using two TNBC cell lines, we found that stable overexpression of TLX impairs in vitro proliferation. RNA-Seq analysis revealed that TLX reduced the expression of genes implicated in epithelial-mesenchymal transition (EMT), a cellular program known to drive metastatic progression. Indeed, TLX overexpression significantly decreased cell migration and invasion, and robustly decreased the metastatic capacity of TNBC cells in murine models. We identify SERPINB2 as a likely mediator of these effects. Taken together, our work indicates that TLX impedes the progression of TNBC. Several ligands have been shown to regulate the transcriptional activity of TLX, providing a framework for the future development of this receptor for therapeutic intervention.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Transição Epitelial-Mesenquimal/genética , Receptor alfa de Estrogênio/genética , Humanos , Ligantes , Camundongos , Receptores Nucleares Órfãos/uso terapêutico , Receptores Citoplasmáticos e Nucleares/genética , Neoplasias de Mama Triplo Negativas/metabolismo
8.
Endocrinology ; 163(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569056

RESUMO

Dysregulation of cholesterol homeostasis is associated with many diseases such as cardiovascular disease and cancer. Liver X receptors (LXRs) are major upstream regulators of cholesterol homeostasis and are activated by endogenous cholesterol metabolites such as 27-hydroxycholesterol (27HC). LXRs and various LXR ligands such as 27HC have been described to influence several extra-hepatic biological systems. However, disparate reports of LXR function have emerged, especially with respect to immunology and cancer biology. This would suggest that, similar to steroid nuclear receptors, the LXRs can be selectively modulated by different ligands. Here, we use RNA-sequencing of macrophages and single-cell RNA-sequencing of immune cells from metastasis-bearing murine lungs to provide evidence that LXR satisfies the 2 principles of selective nuclear receptor modulation: (1) different LXR ligands result in overlapping but distinct gene expression profiles within the same cell type, and (2) the same LXR ligands differentially regulate gene expression in a highly context-specific manner, depending on the cell or tissue type. The concept that the LXRs can be selectively modulated provides the foundation for developing precision pharmacology LXR ligands that are tailored to promote those activities that are desirable (proimmune), but at the same time minimizing harmful side effects (such as elevated triglyceride levels).


Assuntos
Receptores X do Fígado , Neoplasias Mamárias Experimentais , Células Mieloides , Receptores de Esteroides , Animais , Colesterol/metabolismo , Feminino , Ligantes , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Células Mieloides/metabolismo , Células Mieloides/patologia , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , RNA/genética , RNA/metabolismo , Receptores de Esteroides/metabolismo
9.
Medicina (Kaunas) ; 58(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35630004

RESUMO

Background: It has been demonstrated that Egfl7 promotes tumor cell escape from immunity by downregulating the activation of tumor blood vessels. Aim: to analyze mRNA expression of EGFL7 within the tumor microenvironment of high-grade ovarian serous carcinoma and its association with a number of intraepithelial CD4+/CD8+ lymphocytes and ICAM-1 expression. Methods: qPCR analysis of EGFL7 mRNA in cancer cells and adjacent stromal endothelium microdissected from formalin-fixed paraffin-embedded tumors of 59 high-grade ovarian serous carcinoma patients, was performed. Infiltration of intraepithelial lymphocytes (CD4+/CD8+) and expression of ICAM-1 were evaluated by immunohistochemistry and compared between tumors with different statuses of EGFL7 expression. Results: EGFL7 was expressed in cancer cells (9/59, 15.25%), endothelium (8/59, 13.56%), or both cancer cells and adjacent endothelium (4/59, 6.78%). ICAM-1 was expressed on cancer cells (47/59, 79.66%), stromal endothelium (46/59, 77.97%), or both epithelium and endothelium (40 of 59, 67.8%). EGFL7-positivity of cancer cells and endothelium was associated with lower intraepithelial inflow of CD4+ (p = 0.022 and p = 0.029, respectively) and CD8+ lymphocytes (p = 0.004 and p = 0.031, respectively) but impact neither epithelial nor endothelial ICAM-1 expression (p = 0.098 and p = 0.119, respectively). The patients' median follow-up was 23.83 months (range 1.07-78.07). Lack of prognostic significance of EGFL7-status and ICAM-1 expression was notified. Conclusion: EGFL7 is activated in the cancer cells as frequently as in the endothelium of human high-grade ovarian serous carcinoma. Activation of EGFL7 in cancer cells and/or endothelial cells could negatively impact diapedesis regardless of localization.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Proteínas de Ligação ao Cálcio , Cistadenocarcinoma Seroso , Família de Proteínas EGF , Neoplasias Ovarianas , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Cistadenocarcinoma Seroso/patologia , Família de Proteínas EGF/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , RNA Mensageiro , Microambiente Tumoral
10.
Endocrinology ; 162(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34180968

RESUMO

Extracellular vesicles (EVs), including exosomes, are emerging as important carriers of signals in normal and pathological physiology. As EVs are a long-range communication or signaling modality-just like hormones are-the field of endocrinology is uniquely poised to offer insight into their functional biology and regulation. EVs are membrane-bound particles secreted by many different cell types and can have local or systemic effects, being transported in body fluids. They express transmembrane proteins, some of which are shared between EVs and some being specific to the tissue of origin, that can interact with target cells directly (much like hormones can). They also contain cargo within them that includes DNA, RNA, miRNA, and various metabolites. They can fuse with target cells to empty their cargo and alter their target cell physiology in this way also. Similar to the endocrine system, the EV system is likely to be under homeostatic control, making the regulation of their biogenesis and secretion important aspects to study. In this review, we briefly highlight select examples of how EVs are implicated in normal physiology and disease states. We also discuss what is known about their biogenesis and regulation of secretion. We hope that this paper inspires the endocrinology field to use our collective expertise to explore these new multimodal "hormones."


Assuntos
Endocrinologia/tendências , Vesículas Extracelulares/fisiologia , Animais , Transporte Biológico/fisiologia , Pesquisa Biomédica/história , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Comunicação Celular/fisiologia , Endocrinologia/história , Exossomos/fisiologia , Vesículas Extracelulares/patologia , História do Século XX , História do Século XXI , Humanos
11.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33959755

RESUMO

Cholesterol has been implicated in the clinical progression of breast cancer, a disease that continues to be the most commonly diagnosed cancer in women. Previous work has identified the cholesterol metabolite 27-hydroxycholesterol (27HC) as a major mediator of the effects of cholesterol on breast tumor growth and progression. 27HC can act as an estrogen receptor (ER) modulator to promote the growth of ERα+ tumors, and as a liver X receptor (LXR) ligand in myeloid immune cells to establish an immune-suppressive program. In fact, the metastatic properties of 27HC require the presence of myeloid cells with neutrophils (polymorphonuclear neutrophils; PMNs) being essential for the increase in lung metastasis in murine models. In an effort to further elucidate the mechanisms by which 27HC alters breast cancer progression, we made the striking finding that 27HC promoted the secretion of extracellular vesicles (EVs), a diverse assortment of membrane bound particles that includes exosomes. The resulting EVs had a size distribution that was skewed slightly larger than EVs generated by treating cells with vehicle. The increase in EV secretion and size was consistent across 3 different subtypes: primary murine PMNs, RAW264.7 monocytic cells, and 4T1 murine mammary cancer cells. Label-free analysis of 27HC-EVs indicated that they had a different metabolite composition to those from vehicle-treated cells. Importantly, 27HC-EVs from primary PMNs promoted tumor growth and metastasis in 2 different syngeneic models, demonstrating the potential role of 27HC-induced EVs in the progression of breast cancer. EVs from PMNs were taken up by cancer cells, macrophages, and PMNs, but not T cells. Since EVs did not alter proliferation of cancer cells, it is likely that their protumor effects are mediated through interactions with myeloid cells. Interestingly, RNA-seq analysis of tumors from 27HC-EV-treated mice do not display significantly altered transcriptomes, suggesting that the effects of 27HC-EVs occur early on in tumor establishment and growth. Future work will be required to elucidate the mechanisms by which 27HC increases EV secretion, and how these EVs promote breast cancer progression. Collectively, however, our data indicate that EV secretion and content can be regulated by a cholesterol metabolite, which may have detrimental effects in terms of disease progression, important findings given the prevalence of both breast cancer and hypercholesterolemia.


Assuntos
Hidroxicolesteróis/farmacologia , Neoplasias Mamárias Experimentais/patologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Moduladores de Receptor Estrogênico/farmacologia , Vesículas Extracelulares/patologia , Vesículas Extracelulares/fisiologia , Feminino , Hipercolesterolemia/complicações , Camundongos , Metástase Neoplásica/patologia , Transplante de Neoplasias , Neutrófilos/fisiologia , Neutrófilos/ultraestrutura , Células RAW 264.7
12.
Genes (Basel) ; 12(2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530592

RESUMO

Currently, many new possible biomarkers and mechanisms are being searched and tested to analyse pathobiology of pediatric tumours for the development of new treatments. One such candidate molecular factor is BARD1 (BRCA1 Associated RING Domain 1)-a tumour-suppressing gene involved in cell cycle control and genome stability, engaged in several types of adult-type tumours. The data on BARD1 significance in childhood cancer is limited. This study determines the expression level of BARD1 and its isoform beta (ß) in three different histogenetic groups of pediatric cancer-neuroblastic tumours, and for the first time in chosen germ cell tumours (GCT), and rhabdomyosarcoma (RMS), using the qPCR method. We found higher expression of beta isoform in tumour compared to healthy tissue with no such changes concerning BARD1 full-length. Additionally, differences in expression of BARD1 ß between histological types of neuroblastic tumours were observed, with higher levels in ganglioneuroblastoma and ganglioneuroma. Furthermore, a higher expression of BARD1 ß characterized yolk sac tumours (GCT type) and RMS when comparing with non-neoplastic tissue. These tumours also showed a high expression of the TERT (Telomerase Reverse Transcriptase) gene. In two RMS cases we found deep decrease of BARD1 ß in post-chemotherapy samples. This work supports the oncogenicity of the beta isoform in pediatric tumours, as well as demonstrates the differences in its expression depending on the histological type of neoplasm, and the level of maturation in neuroblastic tumours.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Fatores Etários , Processamento Alternativo , Criança , Pré-Escolar , Éxons , Feminino , Humanos , Lactente , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias/diagnóstico , Neoplasias/metabolismo , Especificidade de Órgãos , Isoformas de Proteínas , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
13.
Life (Basel) ; 10(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961879

RESUMO

Oxidative stress is believed to play a critical role in atherosclerosis initiation and progression. In line with this, in a group of 1099 subjects, we determined eight single nucleotide polymorphisms (SNPs) related to oxidative stress (PON1 c.575A>G, MPO c.-463G>A, SOD2 c.47T>C, GCLM c.-590C>T, NOS3 c.894G>T, NOS3 c.-786T>C, CYBA c.214C>T, and CYBA c.-932A>G) and assessed the extent of atherosclerosis in coronary arteries based on Gensini score. An increased risk of having a Gensini score in the higher half of the distribution was observed for the PON1 c.575G allele (odds ratio (OR) = 1.27, 95% confidence interval (CI): 1.004-1.617, p = 0.046). Next, the genetic risk score (GRS) for the additive effect of the total number of pro-oxidative alleles was assessed. We noted an increase in the risk of having a Gensini score above the median with the maximum number of risk alleles (OR = 2.47, 95% CI: 1.19-5.23, p = 0.014). A univariate Spearman's test revealed significant correlation between the total number of pro-oxidant alleles (GRS) and the Gensini score (ρ = 0.068, p = 0.03). In conclusion, the PON1 c.575A>G variant and the high number of risk alleles (GRS) were independent risk factors for a high Gensini score. We suggest, however, that GRS might occur as a more valuable component in adding a predictive value to the genetic background of atherosclerosis.

14.
Tumori ; : 300891619900928, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32026754

RESUMO

OBJECTIVE: We assessed the status of the BRAF V600E mutation in cell-free circulating tumor DNA (cfDNA) isolated from the plasma of patients with metastatic melanoma treated with the BRAF inhibitor vemurafenib, collected at different time points during therapy to evaluate the sensitivity and specificity of quantitative polymerase chain reaction and droplet digital polymerase chain reaction (ddPCR) and the correlation between the level of plasma cfDNA p.V600E and the long-term clinical outcome. METHODS: cfDNA in patients with BRAF-mutated melanoma (n = 62) was analyzed at baseline and at 4-8 weeks from the start of vemurafenib therapy. BRAF mutations were assessed using tumor tissue-derived DNA and circulating cfDNA from plasma samples. Quantification of BRAF V600E was performed in cfDNA using ddPCR. RESULTS: cfDNA V600E was detected in the plasma of 48/62 (77%) patients at baseline and in 18/62 (29%) patients after 4-8 weeks of treatment. Patients positive for BRAF mutations in cfDNA at baseline had shorter progression-free survival (PFS) and overall survival (OS) compared with patients with undetectable cfDNA BRAF mutations. Undetectable cfDNA p.V600E at baseline and after 4-8 weeks of therapy was associated with the best prognosis. When treated as a continuous variable, the log-transformed concentration of baseline cfDNA p.V600E was significantly associated with both PFS and OS. This effect was retained in the multivariate OS Cox model adjusted for Eastern Cooperative Oncology Group performance status, the presence of brain metastases, patient age, and previous systemic treatment. CONCLUSIONS: Monitoring of plasma BRAF p.V600E cfDNA concentrations in patients with metastatic melanoma on targeted therapy may have prognostic value. Undetectable cfDNA p.V600E before and during treatment was associated with a favorable prognosis.

15.
Front Pediatr ; 7: 203, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31157197

RESUMO

Background: Cornelia de Lange Syndrome (CdLS) is a heterogeneous disorder. Diverse expression of clinical symptoms can be caused by a variety of pathogenic variants located within the sequence of different genes correlated with the cohesin complex. Methods: Sixty-nine patients with confirmed clinical diagnosis of CdLS were enrolled in the study. Blood and buccal swab samples were collected for molecular studies. Mutational analysis was performed using the Next Generation (deep) Sequencing (NGS) covering 24 genes. In addition, the MLPA technique was applied to detect large rearrangements of NIPBL. Results: MLPA and NGS analysis were performed in 66 (95,7%) and 67 (97,1%) patients, respectively. Large rearrangements of NIPBL were not identified in the studied group. Germline pathogenic variants were detected in 18 (26,1%) patients. Fourteen variants (20,3%) were identified in NIPBL, two (2,9%) in SMC1A, and two (2,9%) in HDAC8. In total, 13 (18,8%) buccal swabs were suitable for deep sequencing. Mosaic variants were found in four (30,8%; 4/13) patients negative for germline alterations. Three mosaic substitutions were detected in NIPBL while one in KMT2A gene. Conclusions: Comprehensive and sensitive molecular techniques allow detecting novel pathogenic variants responsible for the molecular basis of CdLS. In addition, molecular testing of different tissues should be applied since such an approach allows detect mosaic variants specific for a subgroup of CdLS patients. Finally, to test possible pathogenicity of intronic variants, RNA analysis should be conducted.

16.
Chem Biol Interact ; 307: 154-157, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31071335

RESUMO

Butyrylcholinesterase (BChE) is a serine hydrolase widely distributed throughout the body. It provides protection against administrated or inhaled poisons by hydrolyzing or sequestering the toxic compounds. The most frequent genetic variant of BCHE gene - K variant (p.A539T) is located in the C-terminal tetramerization domain, outside of the catalytic center. Many studies tried to reveal the nature of the lower activity of BChE K-variant but results and conclusions were often contradictory. The aim of this study is to estimate K allele frequency and its coexisting alterations in BCHE gene in a population of 162 individuals, as well as, assess influence on the enzyme activity in serum. We present three haplotypes of BChE-K variant, two of them coexist in strong linkage disequilibrium with alterations in 5'UTR (rs1126680), intron 2 (rs55781031) or in exon 2 (rs1799807). We demonstrate a negative role of these alterations on enzyme activity. By oneself BCHE-K (with no other alterations in BCHE gene) haplotype exhibits wild type enzyme activity. Based on our previous and presented results we conclude that SNPs localized outside the coding sequence, in 5'UTR or/and in intron 2 of BCHE gene, but not solely in K-variant alteration (p.A539T) itself, are responsible for reduced enzyme activity.


Assuntos
Butirilcolinesterase/metabolismo , Regiões 5' não Traduzidas , Adulto , Butirilcolinesterase/química , Butirilcolinesterase/genética , Éxons , Feminino , Haplótipos , Humanos , Íntrons , Cinética , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
17.
BMC Med Genet ; 20(1): 1, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606125

RESUMO

BACKGROUND: Cornelia de Lange syndrome (CdLS), a rare, multisystemic disorder, has been linked to genetic alterations in NIPBL, SMC1A, SMC3, HDAC8, and RAD21 genes. Approximately 60% of CdLS patients harbor various NIPBL variants. Genetic changes predicted to affect NIPBL gene splicing represent 15% of all NIPBL genetic abnormalities. Yet, only a few studies have investigated the molecular consequences of such variants. CASE PRESENTATION: This study reports two novel, intronic NIPBL genetic variants in unrelated CdLS patients with the characteristic phenotype. A c.6954 + 3A > C substitution and a c.5862 + 1delG deletion were identified, one of each, in a 6 year-old boy and 39 month-old girl. Further studies confirmed that both variants introduce premature termination codons, resulting in the formation of truncated proteins p.(Ser2255LeufsTer20) and p.(Leu1955Ter), respectively. CONCLUSION: Single nucleotide alterations located within the conserved splice-donor site of intronic regions of the NIPBL gene can give rise to a premature termination of the translation and cause significant changes in the sequence of mRNA transcripts and NIPBL protein structure and function. The latter underline development of Cornelia de Lange syndrome phenotype.


Assuntos
Síndrome de Cornélia de Lange/genética , Íntrons/genética , Proteínas/genética , Sequência de Bases , Proteínas de Ciclo Celular , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Deleção de Genes , Humanos , Masculino , Fenótipo , Conformação Proteica , Proteínas/metabolismo , Splicing de RNA , Análise de Sequência de DNA
18.
Clin Genet ; 95(3): 415-419, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30548255

RESUMO

Inherited ataxias are a group of highly heterogeneous, complex neurological disorders representing a significant diagnostic challenge in clinical practice. We performed a next-generation sequencing (NGS) analysis in 10 index cases with unexplained progressive cerebellar ataxia of suspected autosomal recessive inheritance. A definite molecular diagnosis was obtained in 5/10 families and included the following diseases: autosomal recessive spastic ataxia of Charlevoix-Saguenay, POLR3B-related hypomyelinating leukodystrophy, primary coenzyme Q10 deficiency type 4, Niemann-Pick disease type C1 and SYNE1-related ataxia. In addition, we found a novel homozygous MTCL1 loss of function variant p.(Lys407fs) in a 23-year-old patient with slowly progressive cerebellar ataxia, mild intellectual disability, seizures in childhood and episodic pain in the lower limbs. The identified variant is predicted to truncate the protein after first 444 of 1586 amino acids. MTCL1 encodes a microtubule-associated protein highly expressed in cerebellar Purkinje cells; its knockout in a mouse model causes ataxia. We propose MTCL1 as a candidate gene for autosomal recessive cerebellar ataxia in humans. In addition, our study confirms the high diagnostic yield of NGS in early-onset cerebellar ataxias, with at least 50% detection rate in our ataxia cohort.


Assuntos
Ataxia/diagnóstico , Ataxia/genética , Heterogeneidade Genética , Proteínas Associadas aos Microtúbulos/genética , Mutação , Fenótipo , Idade de Início , Alelos , Criança , Pré-Escolar , Feminino , Frequência do Gene , Testes Genéticos , Genótipo , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Polônia
19.
Cancers (Basel) ; 10(11)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441849

RESUMO

Constitutional loss-of-function pathogenic variants in the tumor suppressor genes BRCA1 and BRCA2 are widely associated with an elevated risk of ovarian cancer (OC). As only ~15% of OC individuals carry the BRCA1/2 pathogenic variants, the identification of other potential OC-susceptibility genes is of great clinical importance. Here, we established the prevalence and spectrum of the germline pathogenic variants in the BRCA1/2 and 23 other cancer-related genes in a large Polish population of 333 unselected OC cases. Approximately 21% of cases (71/333) carried the BRCA1/2 pathogenic or likely pathogenic variants, with c.5266dup (p.Gln1756Profs*74) and c.3700_3704del (p.Val1234Glnfs*8) being the most prevalent. Additionally, ~6% of women (20/333) were carriers of the pathogenic or likely pathogenic variants in other cancer-related genes, with NBN and CHEK2 reported as the most frequently mutated, accounting for 1.8% (6/333) and 1.2% (4/333) of cases, respectively. We also found ten pathogenic or likely pathogenic variants in other genes: 1/333 in APC, 1/333 in ATM, 2/333 in BLM, 1/333 in BRIP1, 1/333 in MRE11A, 2/333 in PALB2, 1/333 in RAD50, and 1/333 in RAD51C, accounting for 50% of all detected variants in moderate- and low-penetrant genes. Our findings confirmed the presence of the additional OC-associated genes in the Polish population that may improve the personalized risk assessment of these individuals.

20.
Front Genet ; 9: 255, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057591

RESUMO

Cornelia de Lange Syndrome (CdLS) is a well described multiple malformation syndrome caused by alterations in genes encoding subunits or regulators of the cohesin complex. In approximately 70% of CdLS patients, pathogenic NIPBL variants are detected and 15% of them are predicted to affect splicing. Moreover, a large portion of genetic variants in NIPBL was shown to be somatic mosaicism. Here we report two family members with different expression of the CdLS phenotype. In both individuals, a c.869-2A>G (r.869_1495del) substitution was detected, affecting a conserved splice-acceptor site. Deep sequencing revealed the presence of somatic mosaicism in the mother. The substitution was detected in 23% of the sequencing reads using DNA derived from blood samples and 51% in DNA from buccal swabs. The analysis of blood DNA of the son excluded the presence of somatic mosaicism. Correlation of molecular and clinical data revealed that various distribution of genetic alteration in different cell types had an impact on the expression of observed clinical features in both individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA