Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; 44(2): 207-214, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31257938

RESUMO

The search for tacrine derivatives, as potential Alzheimer´s disease treatment, is still being at the forefront of scientific efforts. 7-MEOTA was found to be a potent, centrally active acetylcholinesterase inhibitor free of the serious side effects observed for tacrine. Unfortunately, a relevant argumentation about pharmacokinetics and potential toxicity is incomplete; information about tacrine derivatives absorption and especially CNS penetration are still rare as well as detailed toxicological profile in vivo. Although the structural changes between these compounds are not so distinctive, differences in plasma profile and CNS targeting were found. The maximum plasma concentration were attained at 18th min (tacrine; 38.20 ± 3.91 ng/ml and 7-MEOTA; 88.22 ± 15.19 ng/ml) after i.m. application in rats. Although the brain profiles seem to be similar; tacrine achieved 19.34 ± 0.71 ng/ml in 27 min and 7-MEOTA 15.80 ± 1.13 ng/ml in 22 min; the tacrine Kp (AUCbrain/AUCplasma) fit 1.20 and was significantly higher than 7-MEOTA Kp 0.10. Administration of tacrine and 7-MEOTA showed only mild elevation of some biochemical markers following single p.o. application in 24 hours and 7 days. Also histopathology revealed only mild-to-moderate changes following repeated p.o. administration for 14 days. It seems that small change in tacrine molecule leads to lower ability to penetrate through the biological barriers. The explanation that lower p.o. acute toxicity of 7-MEOTA depends only on differences in metabolic pathways may be now revised to newly described differences in pharmacokinetic and toxicological profiles.


Assuntos
Encéfalo/metabolismo , Inibidores da Colinesterase/administração & dosagem , Tacrina/análogos & derivados , Animais , Área Sob a Curva , Inibidores da Colinesterase/farmacocinética , Inibidores da Colinesterase/toxicidade , Masculino , Ratos , Ratos Wistar , Tacrina/administração & dosagem , Tacrina/farmacocinética , Tacrina/toxicidade , Fatores de Tempo , Distribuição Tecidual
2.
Iran J Pharm Res ; 19(3): 95-102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33680013

RESUMO

Current palliative pharmacotherapy of Alzheimer's disease based on the cholinergic hypothesis led to the development of four cholinesterase inhibitors. These compounds can bring prolongation of the symptom-free period in some patients. This is the first report directly comparing donepezil and rivastigmine plasma and brain levels in in-vivo study. Donepezil and rivastigmine were applied i.m. to rats; the dose was calculated from clinical recommendations. The samples were analysed on an Agilent 1260 Series LC with UV/VIS detector. An analytical column (Waters Spherisorb S5 W (250 mm × 4.6 i.d.; 5 µm particle size)) with guard column (Waters Spherisorb S5 W (30 mm × 4.6 mm i.d.)) was used. The mobile phase contained acetonitrile and 50 mM sodium dihydrogen phosphate (17:83; v/v); pH 3.1. The LLOQ in rat plasma was 0.5 ng/mL for donepezil and 0.8 ng/mL for rivastigmine, and the LLOQ in rat brain was 1.0 ng/mL for donepezil and 1.1 ng/mL for rivastigmine. Both compounds showed ability to target the central nervous system, with brain concentrations exceeding those in plasma. Maximum brain concentration after i.m. administration was reached in the 36 (8.34 ± 0.34 ng/mL) and 17 minute (6.18 ± 0.40 ng/mL), respectively for donepezil and rivastigmine. The differences in brain profile can be most easily expressed by plasma/brain AUCtotal ratios: donepezil ratio in the brain was nine-times higher than in plasma and rivastigmine ratio was less than two-times higher than in plasma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA