Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255863

RESUMO

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) of still unclear etiology. In recent years, the search for biomarkers facilitating its diagnosis, prognosis, therapy response, and other parameters has gained increasing attention. In this regard, in a previous meta-analysis comprising 22 studies, we found that MS is associated with higher nitrite/nitrate (NOx) levels in the cerebrospinal fluid (CSF) compared to patients with non-inflammatory other neurological diseases (NIOND). However, many of the included studies did not distinguish between the different clinical subtypes of MS, included pre-treated patients, and inclusion criteria varied. As a follow-up to our meta-analysis, we therefore aimed to analyze the serum and CSF NOx levels in clinically well-defined cohorts of treatment-naïve MS patients compared to patients with somatic symptom disorder. To this end, we analyzed the serum and CSF levels of NOx in 117 patients (71 relapsing-remitting (RR) MS, 16 primary progressive (PP) MS, and 30 somatic symptom disorder). We found that RRMS and PPMS patients had higher serum NOx levels compared to somatic symptom disorder patients. This difference remained significant in the subgroup of MRZ-negative RRMS patients. In conclusion, the measurement of NOx in the serum might indeed be a valuable tool in supporting MS diagnosis.


Assuntos
Doenças Autoimunes , Sintomas Inexplicáveis , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico , Estresse Nitrosativo , Sistema Nervoso Central
2.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362063

RESUMO

Siponimod (Mayzent®), a sphingosine 1-phosphate receptor (S1PR) modulator which prevents lymphocyte egress from lymphoid tissues, is approved for the treatment of relapsing-remitting and active secondary progressive multiple sclerosis. It can cross the blood-brain barrier (BBB) and selectively binds to S1PR1 and S1PR5 expressed by several cell populations of the central nervous system (CNS) including microglia. In multiple sclerosis, microglia are a key CNS cell population moving back and forth in a continuum of beneficial and deleterious states. On the one hand, they can contribute to neurorepair by clearing myelin debris, which is a prerequisite for remyelination and neuroprotection. On the other hand, they also participate in autoimmune inflammation and axonal degeneration by producing pro-inflammatory cytokines and molecules. In this study, we demonstrate that siponimod can modulate the microglial reaction to lipopolysaccharide-induced pro-inflammatory activation.


Assuntos
Azetidinas , Esclerose Múltipla , Humanos , Microglia/metabolismo , Compostos de Benzil/farmacologia , Azetidinas/farmacologia , Azetidinas/metabolismo , Esclerose Múltipla/metabolismo
3.
J Neuroinflammation ; 19(1): 270, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348455

RESUMO

BACKGROUND: Cladribine is a synthetic purine analogue that interferes with DNA synthesis and repair next to disrupting cellular proliferation in actively dividing lymphocytes. The compound is approved for the treatment of multiple sclerosis (MS). Cladribine can cross the blood-brain barrier, suggesting a potential effect on central nervous system (CNS) resident cells. Here, we explored compartment-specific immunosuppressive as well as potential direct neuroprotective effects of oral cladribine treatment in experimental autoimmune encephalomyelitis (EAE) mice. METHODS: In the current study, we compare immune cell frequencies and phenotypes in the periphery and CNS of EAE mice with distinct grey and white matter lesions (combined active and focal EAE) either orally treated with cladribine or vehicle, using flow cytometry. To evaluate potential direct neuroprotective effects, we assessed the integrity of the primary auditory cortex neuronal network by studying neuronal activity and spontaneous synaptic activity with electrophysiological techniques ex vivo. RESULTS: Oral cladribine treatment significantly attenuated clinical deficits in EAE mice. Ex vivo flow cytometry showed that cladribine administration led to peripheral immune cell depletion in a compartment-specific manner and reduced immune cell infiltration into the CNS. Histological evaluations revealed no significant differences for inflammatory lesion load following cladribine treatment compared to vehicle control. Single cell electrophysiology in acute brain slices was performed and showed an impact of cladribine treatment on intrinsic cellular firing patterns and spontaneous synaptic transmission in neurons of the primary auditory cortex. Here, cladribine administration in vivo partially restored cortical neuronal network function, reducing action potential firing. Both, the effect on immune cells and neuronal activity were transient. CONCLUSIONS: Our results indicate that cladribine exerts a neuroprotective effect after crossing the blood-brain barrier independently of its peripheral immunosuppressant action.


Assuntos
Encefalomielite Autoimune Experimental , Encefalomielite , Fármacos Neuroprotetores , Camundongos , Animais , Encefalomielite Autoimune Experimental/patologia , Cladribina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Imunossupressores/uso terapêutico
4.
Vaccines (Basel) ; 10(7)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35891296

RESUMO

Neuromyotonia is a rare peripheral nerve hyperexcitability syndrome often associated with antibodies directed against contactin-associated protein-like 2 and leucine-rich, glioma inactivated 1. The quadrivalent human papilloma virus vaccine Gardasil®, first approved in 2006, is known to be a highly effective prophylaxis against papillomavirus types 6, 11, 16, and 18. Molecularly, this non-infectious recombinant vaccine is based on purified L1 proteins from the human papilloma virus capsid. Since the approval of this vaccine, several studies have investigated its safety regarding the occurrence of autoimmune conditions following application. Here, we present the first case of neuromyotonia with active Gadolinium enhancing demyelinating central nervous system lesions following vaccination with Gardasil®.

5.
Curr Opin Neurol ; 35(3): 307-312, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35674073

RESUMO

PURPOSE OF REVIEW: The introduction some 30 years ago of ß-interferon, followed by a panel of immunomodulators and immunosuppressants has led to a remarkable improvement in the management of multiple sclerosis (MS) patients. Despite these noticeable progresses, which lower the number of relapses and thereby ameliorate patients' quality of life, preventing long-term progression of disability is still an unmet need, highlighting the necessity to develop therapeutic strategies aimed at repairing demyelinated lesions and protecting axons from degeneration. The capacity of human brain to self-regenerate demyelinated lesion has opened a field of research aimed at fostering this endogenous potential. RECENT FINDINGS: The pioneer electron microscopic evidence by Périer and Grégoire [Périer O, Grégoire A. Electron microscopic features of multiple sclerosis lesions. Brain 1965; 88:937-952] suggesting the capacity of human brain to self-regenerate demyelinated lesion has opened a field of research aimed at fostering this endogenous potential. Here we review some recently identified mechanisms involved in the remyelination process, focusing on the role of electrical activity and the involvement of innate immune cells. We then provide an update on current strategies promoting endogenous myelin repair. SUMMARY: Identification of therapeutic targets for remyelination has opened an active therapeutic field in MS. Although still in early phase trials, with heterogenous efficacy, the door for myelin regeneration in MS is now opened.


Assuntos
Esclerose Múltipla , Remielinização , Humanos , Esclerose Múltipla/tratamento farmacológico , Bainha de Mielina/patologia , Oligodendroglia/patologia , Qualidade de Vida
6.
J Neurol Neurosurg Psychiatry ; 93(9): 978-985, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35193952

RESUMO

BACKGROUND: Vaccination has proven to be effective in preventing SARS-CoV-2 transmission and severe disease courses. However, immunocompromised patients have not been included in clinical trials and real-world clinical data point to an attenuated immune response to SARS-CoV-2 vaccines among patients with multiple sclerosis (MS) receiving immunomodulatory therapies. METHODS: We performed a retrospective study including 59 ocrelizumab (OCR)-treated patients with MS who received SARS-CoV-2 vaccination. Anti-SARS-CoV-2-antibody titres, routine blood parameters and peripheral immune cell profiles were measured prior to the first (baseline) and at a median of 4 weeks after the second vaccine dose (follow-up). Moreover, the SARS-CoV-2-specific T cell response and peripheral B cell subsets were analysed at follow-up. Finally, vaccination-related adverse events were assessed. RESULTS: After vaccination, we found anti-SARS-CoV-2(S) antibodies in 27.1% and a SARS-CoV-2-specific T cell response in 92.7% of MS cases. T cell-mediated interferon (IFN)-γ release was more pronounced in patients without anti-SARS-CoV-2(S) antibodies. Antibody titres positively correlated with peripheral B cell counts, time since last infusion and total IgM levels. They negatively correlated with the number of previous infusion cycles. Peripheral plasma cells were increased in antibody-positive patients. A positive correlation between T cell response and peripheral lymphocyte counts was observed. Moreover, IFN-γ release was negatively correlated with the time since the last infusion. CONCLUSION: In OCR-treated patients with MS, the humoral immune response to SARS-CoV-2 vaccination is attenuated while the T cell response is preserved. However, it is still unclear whether T or B cell-mediated immunity is required for effective clinical protection. Nonetheless, given the long-lasting clinical effects of OCR, monitoring of peripheral B cell counts could facilitate individualised treatment regimens and might be used to identify the optimal time to vaccinate.


Assuntos
COVID-19 , Esclerose Múltipla , Vacinas Virais , Anticorpos Monoclonais Humanizados , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Humanos , Imunidade , Esclerose Múltipla/tratamento farmacológico , Estudos Retrospectivos , SARS-CoV-2 , Vacinação
7.
Brain Stimul ; 15(2): 403-413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35182811

RESUMO

BACKGROUND: Cortical reorganization and plasticity may compensate for structural damage in Multiple Sclerosis (MS). It is important to establish sensitive methods to measure these compensatory mechanisms, as they may be of prognostic value. OBJECTIVE: To investigate the association between the degree of cortical plasticity and cognitive performance and to compare plasticity between MS patients and healthy controls (HCs). METHODS: The amplitudes of the motor evoked potential (MEP) pre and post quadripulse stimulation (QPS) applied over the contralateral motor cortex served as measure of the degree of cortical plasticity in 63 patients with relapsing-remitting MS (RRMS) and 55 matched HCs. The main outcomes were the correlation coefficients between the difference of MEP amplitudes post and pre QPS and the Symbol Digit Modalities Test (SDMT) and Brief Visuospatial Memory Test-Revised (BVMT-R), and the QPSxgroup interaction in a mixed model predicting the MEP amplitude. RESULTS: SDMT and BVMT-R correlated significantly with QPS-induced cortical plasticity in RRMS patients. Plasticity was significantly reduced in patients with cognitive impairment compared to patients with preserved cognitive function and the degree of plasticity differentiated between both patient groups. Interestingly, the overall RRMS patient cohort did not show reduced plasticity compared to HCs. CONCLUSIONS: We provide first evidence that QPS-induced plasticity may inform about the global synaptic plasticity in RRMS which correlates with cognitive performance as well as clinical disability. Larger longitudinal studies on patients with MS are needed to investigate the relevance and prognostic value of this measure for disease progression and recovery.


Assuntos
Disfunção Cognitiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Cognição , Humanos , Testes Neuropsicológicos
8.
Mult Scler ; 28(3): 429-440, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34240656

RESUMO

BACKGROUND: The envelope protein of human endogenous retrovirus W (HERV-W-Env) is expressed by macrophages and microglia, mediating axonal damage in chronic active MS lesions. OBJECTIVE AND METHODS: This phase 2, double-blind, 48-week trial in relapsing-remitting MS with 48-week extension phase assessed the efficacy and safety of temelimab; a monoclonal antibody neutralizing HERV-W-Env. The primary endpoint was the reduction of cumulative gadolinium-enhancing T1-lesions in brain magnetic resonance imaging (MRI) scans at week 24. Additional endpoints included numbers of T2 and T1-hypointense lesions, magnetization transfer ratio, and brain atrophy. In total, 270 participants were randomized to receive monthly intravenous temelimab (6, 12, or 18 mg/kg) or placebo for 24 weeks; at week 24 placebo-treated participants were re-randomized to treatment groups. RESULTS: The primary endpoint was not met. At week 48, participants treated with 18 mg/kg temelimab had fewer new T1-hypointense lesions (p = 0.014) and showed consistent, however statistically non-significant, reductions in brain atrophy and magnetization transfer ratio decrease, as compared with the placebo/comparator group. These latter two trends were sustained over 96 weeks. No safety issues emerged. CONCLUSION: Temelimab failed to show an effect on features of acute inflammation but demonstrated preliminary radiological signs of possible anti-neurodegenerative effects. Current data support the development of temelimab for progressive MS. TRIAL REGISTRATION: CHANGE-MS: ClinicalTrials.gov: NCT02782858, EudraCT: 2015-004059-29; ANGEL-MS: ClinicalTrials.gov: NCT03239860, EudraCT: 2016-004935-18.


Assuntos
Anticorpos Monoclonais Humanizados , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Método Duplo-Cego , Produtos do Gene env/uso terapêutico , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/patologia , Resultado do Tratamento
9.
Front Immunol ; 13: 1037214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618356

RESUMO

Introduction: Given the varying severity of coronavirus disease 2019 (COVID-19) and the rapid spread of Severe-Acute-Respiratory-Syndrome-Corona-Virus-2 (SARS-CoV-2), vaccine-mediated protection of particularly vulnerable individuals has gained increasing attention during the course of the pandemic. Methods: We performed a 1-year follow-up study of 51 ocrelizumab-treated patients with multiple sclerosis (OCR-pwMS) who received COVID-19 vaccination in 2021. We retrospectively identified 37 additional OCR-pwMS, 42 pwMS receiving natalizumab, 27 pwMS receiving sphingosine 1-phosphate receptor modulators, 59 pwMS without a disease-modifying therapy, and 61 controls without MS (HC). In OCR-pwMS, anti-SARS-CoV-2(S)-antibody titers were measured prior to the first and after the second, third, and fourth vaccine doses (pv2/3/4). The SARS-CoV-2-specific T cell response was analyzed pv2. SARS-CoV-2 infection status, COVID-19 disease severity, and vaccination-related adverse events were assessed in all pwMS and HC. Results: We found a pronounced and increasing anti-SARS-CoV-2(S)-antibody response after COVID-19 booster vaccinations in OCR-pwMS (pv2: 30.4%, pv3: 56.5%, and pv4 90.0% were antibody positive). More than one third of OCR-pwMS without detectable antibodies pv2 developed positive antibodies pv3. 23.5% of OCR-pwMS had a confirmed SARS-CoV-2 infection, of which 84.2% were symptomatic. Infection rates were comparable between OCR-pwMS and control groups. None of the pwMS had severe COVID-19. An attenuated humoral immune response was not associated with a higher risk of SARS-CoV-2 infection. Discussion: Additional COVID-19 vaccinations can boost the humoral immune response in OCR-pwMS and improve clinical protection against COVID-19. Vaccines effectively protect even OCR-pwMS without a detectable COVID-19 specific humoral immune response, indicating compensatory, e.g., T cell-mediated immunological mechanisms.


Assuntos
COVID-19 , Esclerose Múltipla , Vacinas , Humanos , COVID-19/prevenção & controle , Seguimentos , Esclerose Múltipla/tratamento farmacológico , SARS-CoV-2 , Vacinas contra COVID-19 , Estudos Retrospectivos , Anticorpos Monoclonais Humanizados/uso terapêutico
10.
Biomedicines ; 9(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944714

RESUMO

Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system of unknown etiology. As it is still a diagnosis of exclusion, there is an urgent need for biomarkers supporting its diagnosis. Increasing evidence suggests that nitrosative stress may play a pivotal role in the pathogenesis of MS. However, previous reports supporting the role of nitrosative stress molecules as disease biomarkers are inconsistent overall. We therefore systematically analyzed the existing literature to compare the serum and cerebrospinal fluid (CSF) levels of nitrite/nitrate in MS patients with those in patients with noninflammatory other neurological diseases (NIOND) and healthy controls (HC), respectively. We searched the PubMed database and included original articles investigating nitrite/nitrate levels in MS patients and NIOND patients or HC based on predefined selection criteria. Effect sizes were estimated by the standardized mean difference using a random effects model. Our results suggest that MS is associated with higher nitrite/nitrate levels within the CSF compared with patients with NIOND (SMD of 1.51; 95% CI: 0.72, 2.30; p = 0.0008). Likewise, nitrite/nitrate in the CSF of MS patients trends towards increased levels compared with those of HC but does not reach statistical significance (SMD of 3.35; 95% CI: -0.48, 7.19; p = 0.07). Measurement of nitrite/nitrate in the CSF might be a valuable tool facilitating the differentiation of MS and NIOND. Further studies with more homogeneous study criteria are needed to corroborate this hypothesis.

11.
Front Neurol ; 12: 785180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777236

RESUMO

Fingolimod (FTY) is a disease modifying therapy for relapsing remitting multiple sclerosis (RRMS) which can lead to severe lymphopenia requiring therapy discontinuation in order to avoid adverse events. However, this can result in severe disease reactivation occasionally presenting with tumefactive demyelinating lesions (TDLs). TDLs, which are thought to originate from a massive re-entry of activated lymphocytes into the central nervous system, are larger than 2 cm in diameter and may feature mass effect, perifocal edema, and gadolinium enhancement. In these cases, it can be challenging to exclude important differential diagnoses for TDLs such as progressive multifocal leukoencephalopathy (PML) or other opportunistic infections. Here, we present the case of a 26-year-old female patient who suffered a massive rebound with TDLs following FTY discontinuation with primarily neuropsychiatric symptoms despite persisting lymphopenia. Two cycles of seven plasmaphereses each were necessary to achieve remission and ocrelizumab was used for long-term stabilization.

12.
Front Immunol ; 12: 747143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691057

RESUMO

Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.


Assuntos
Doenças Autoimunes/imunologia , Doenças Autoimunes/microbiologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/microbiologia , Linfócitos T Reguladores/imunologia , Animais , Humanos , Infecção Persistente/imunologia
13.
Front Neurol ; 12: 696807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248832

RESUMO

The Marburg variant of multiple sclerosis (Marburg MS) is the most aggressive form of MS, often leading to death soon after onset. Here we describe the case of a 26-year-old Marburg MS patient presenting with severe neurological deficits requiring intensive care. In spite of more than 100 gadolinium-enhancing MRI lesions, the patient recovered almost completely upon high-dose cyclophosphamide (HiCy) rescue treatment (four consecutive days with 50 mg/kg/day, cumulative absolute dose of 14 g). Following the acute treatment, her disease was stabilized by B cell depletion using ocrelizumab. Clinical amelioration was reflected by a decrease of MRI activity and a marked decline of serum neurofilament light chain levels. HiCy rescue treatment followed by ocrelizumab as a maintenance therapy prevented permanent disability and achieved an almost complete clinical and drastic radiological improvement in this Marburg MS patient.

14.
Brain Commun ; 2(2): fcaa149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33210085

RESUMO

Severe acute respiratory syndrome coronavirus 2 first appeared in December 2019 in Wuhan, China, and developed into a worldwide pandemic within the following 3 months causing severe bilateral pneumonia (coronavirus disease 2019) with in part fatal outcomes. After first experiences and tentative strategies to face this new disease, several cases were published describing severe acute respiratory syndrome coronavirus 2 infection related to the onset of neurological complaints and diseases such as, for instance, anosmia, stroke or meningoencephalitis. Of note, there is still a controversy about whether or not there is a causative relation between severe acute respiratory syndrome coronavirus 2 and these neurological conditions. Other concerns, however, seem to be relevant as well. This includes not only the reluctance of patients with acute neurological complaints to report to the emergency department for fear of contracting severe acute respiratory syndrome coronavirus 2 but also the ethical and practical implications for neurology patients in everyday clinical routine. This paper aims to provide an overview of the currently available evidence for the occurrence of severe acute respiratory syndrome coronavirus 2 in the central and peripheral nervous system and the neurological diseases potentially involving this virus.

15.
Int J Mol Sci ; 21(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570968

RESUMO

Mesenchymal stem cell (MSC)-secreted factors have been shown to significantly promote oligodendrogenesis from cultured primary adult neural stem cells (aNSCs) and oligodendroglial precursor cells (OPCs). Revealing underlying mechanisms of how aNSCs can be fostered to differentiate into a specific cell lineage could provide important insights for the establishment of novel neuroregenerative treatment approaches aiming at myelin repair. However, the nature of MSC-derived differentiation and maturation factors acting on the oligodendroglial lineage has not been identified thus far. In addition to missing information on active ingredients, the degree to which MSC-dependent lineage instruction is functional in vivo also remains to be established. We here demonstrate that MSC-derived factors can indeed stimulate oligodendrogenesis and myelin sheath generation of aNSCs transplanted into different rodent central nervous system (CNS) regions, and furthermore, we provide insights into the underlying mechanism on the basis of a comparative mass spectrometry secretome analysis. We identified a number of secreted proteins known to act on oligodendroglia lineage differentiation. Among them, the tissue inhibitor of metalloproteinase type 1 (TIMP-1) was revealed to be an active component of the MSC-conditioned medium, thus validating our chosen secretome approach.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Células-Tronco Adultas/citologia , Animais , Diferenciação Celular , Células Cultivadas , Meios de Cultivo Condicionados/química , Feminino , Células-Tronco Mesenquimais/metabolismo , Cultura Primária de Células , Proteômica , Ratos , Transplante de Células-Tronco
16.
Mult Scler Relat Disord ; 42: 102068, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32302965

RESUMO

The Third International Workshop on Human Endogenous Retroviruses and disease (www.hervanddisease.com), addressing HERVs or transposable elements in autoimmune, chronic inflammatory and degenerative diseases or cancer, in Lyon, France on November 5-6th 2019, once again gathered an international group of basic and clinical scientists investigating the involvement of human endogenous retroviruses (HERVs) in human diseases.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Congressos como Assunto , Retrovirus Endógenos , Fatores Imunológicos/farmacologia , Esclerose Múltipla , França , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/etiologia , Esclerose Múltipla/virologia
17.
BMC Neurol ; 20(1): 158, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32340606

RESUMO

BACKGROUND: Fingolimod (Gilenya®), a first-in-class sphingosine-1-phosphate receptor modulator is approved for the treatment of relapsing-remitting multiple sclerosis. Fingolimod-induced selective immunosuppression leads to an increased risk of opportunistic infections such as cryptococcosis. So far, a total of 8 cases of fingolimod-related cryptococcal meningoencephalitis have been published. CASE PRESENTATION: A 49-year-old female with relapsing-remitting multiple sclerosis presented with cephalgia, fever, confusion and generalized weakness. She had been on fingolimod therapy for the past 5.5 years. Clinical examination suggested meningoencephalitis and laboratory findings showed an IgG2 deficiency. Initially no pathogen could be detected, but after 4 days Cryptococcus neoformans was found in the patient's blood cultures leading to the diagnosis of cryptococcal meningoencephalitis. After antimycotic therapy, her symptoms improved and the patient was discharged. CONCLUSION: MS patients on immunomodulatory  therapy are at constant risk for opportunistic infections. Cephalgia, fever and generalized weakness in combination with fingolimod-induced lymphopenia should be considered a red flag for cryptococcosis.


Assuntos
Criptococose/diagnóstico , Cloridrato de Fingolimode/efeitos adversos , Meningoencefalite/diagnóstico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Feminino , Cloridrato de Fingolimode/administração & dosagem , Humanos , Imunoglobulina G/imunologia , Imunossupressores/uso terapêutico , Linfopenia/induzido quimicamente , Pessoa de Meia-Idade , Infecções Oportunistas/diagnóstico
18.
J Neurol ; 267(2): 308-316, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30610426

RESUMO

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) with a diverse disease course involving inflammation and degeneration of neurons and axons. Multiple sclerosis results from a complex interaction of genetic and environmental factors and clinically several disease subtypes with marked variation in symptoms can be discerned. Disease-modifying therapies (DMTs) impact disease activity and outcome. Long-term follow-up studies of DMTs in MS have generally shown that the short-term effects in clinical trials are maintained for up to 21 years, e.g. in the case of interferon beta-1b. However, attainment can be a problem in these studies. On the one hand, so-called real-world studies can augment clinical trials by providing data on the long-term effectiveness and safety of DMTs but lack, on the other hand, randomization and may, in addition, also yield biased findings as a result of compliance issues. Long-term data from clinical trials in clinically isolated syndrome (CIS) patients have been limited but in the case of interferon beta-1b this aspect has been addressed over 11 years in the BENEFIT 11 trial. The results suggest that early treatment results in persistent long-term benefits including conversion to clinically definite MS (CDMS) as well as time to and risk of a first relapse. Here we primarily review the findings of the BENEFIT 11 trial in the context of long-term studies.


Assuntos
Esclerose Múltipla/terapia , Diagnóstico Precoce , Acetato de Glatiramer/uso terapêutico , Humanos , Interferon beta-1b/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA