Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(23): 14219-14227, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35647789

RESUMO

We study the diffusion of cocaine through a DMPC lipid bilayer as an example of a protonable, amphiphilic molecule passing a biological membrane. Using classical molecular dynamics simulations, the free energy surfaces are computed applying the umbrella sampling technique for the protonated and the neutral molecule. For the combined surface, we numerically solve the diffusion equation at constant flow and for time-dependent concentrations. We find a potential of mean force dominated by a barrier of 3.5 kcal mol-1 within the membrane, and a pH-dependent entry and exit barrier of 2.0 kcal mol-1 and 4.1 kcal mol-1, respectively. This behaviour can be rationalized chemically by the amphiphilic nature of the molecule and the change of its protonation state while passing the membrane. Diffusion through the barriers is 3.5 times slower than along the membrane, and the typical time scale of passage amounts to 0.1 ms. We discuss biochemical and medical implications of our findings, and comment on the mechanism of the drug passing the blood-brain barrier.


Assuntos
Cocaína , Difusão , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Termodinâmica
2.
Nanoscale ; 10(4): 1877-1884, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29313048

RESUMO

In this work, reduced graphene oxide (rGO) based electrode materials were developed to achieve a hybrid supercapacitor (SC) function. Therefore, several synthesis methods were developed to prepare a cost effective and environmentally friendly rGO. Additionally, to maintain the high surface area, spinel lithium titanate (sLTO) nanoparticles (NPs) were synthesized and deposited on the rGO surface to inhibit the restacking of the rGO layers on graphite. Furthermore, the adequate Fe-doping of sLTO increased the ionic conductivity and the intercalation capacity, which is necessary for a SC performance. The sLTO/rGO-composites were electrochemically analysed by chronopotentiometry and electrochemical impedance spectroscopy (EIS) to determine the stability during charge/discharge cycling and the capacity, respectively. To overcome the drawback of LTO's low conductivity values, its value has been drastically increased by Fe-doping. The results demonstrated the remarkable cycling performance of the Fe:LTO/rGO composite as well as a higher capacity compared to LTO/rGO and pure rGO-electrodes. The thermal stability, degradation and weight loss of the sLTO/rGO in the temperature range between 20 °C and 800 °C were investigated by thermogravimetry (TG)/DTA. As a conclusion, it can be stated that, increasing the ionic conductivity by Fe-doping drastically increases the hybrid capacity of the SC electrodes.

3.
Sci Rep ; 7(1): 11222, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894243

RESUMO

Multi-colored, water soluble fluorescent carbon nanodots (C-Dots) with quantum yield changing from 4.6 to 18.3% were synthesized in multi-gram using dated cola beverage through a simple thermal synthesis method and implemented as conductive and ion donating supercapacitor component. Various properties of C-Dots, including size, crystal structure, morphology and surface properties along with their Raman and electron paramagnetic resonance spectra were analyzed and compared by means of their fluorescence and electronic properties. α-Manganese Oxide-Polypyrrole (PPy) nanorods decorated with C-Dots were further conducted as anode materials in a supercapacitor. Reduced graphene oxide was used as cathode along with the dicationic bis-imidazolium based ionic liquid in order to enhance the charge transfer and wetting capacity of electrode surfaces. For this purpose, we used octyl-bis(3-methylimidazolium)diiodide (C8H16BImI) synthesized by N-alkylation reaction as liquid ionic membrane electrolyte. Paramagnetic resonance and impedance spectroscopy have been undertaken in order to understand the origin of the performance of hybrid capacitor in more depth. In particular, we obtained high capacitance value (C = 17.3 µF/cm2) which is exceptionally related not only the quality of synthesis but also the choice of electrode and electrolyte materials. Moreover, each component used in the construction of the hybrid supercapacitor is also played a key role to achieve high capacitance value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA