Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Sci Adv ; 10(26): eadl0030, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924398

RESUMO

How can short-lived molecules selectively maintain the potentiation of activated synapses to sustain long-term memory? Here, we find kidney and brain expressed adaptor protein (KIBRA), a postsynaptic scaffolding protein genetically linked to human memory performance, complexes with protein kinase Mzeta (PKMζ), anchoring the kinase's potentiating action to maintain late-phase long-term potentiation (late-LTP) at activated synapses. Two structurally distinct antagonists of KIBRA-PKMζ dimerization disrupt established late-LTP and long-term spatial memory, yet neither measurably affects basal synaptic transmission. Neither antagonist affects PKMζ-independent LTP or memory that are maintained by compensating PKCs in ζ-knockout mice; thus, both agents require PKMζ for their effect. KIBRA-PKMζ complexes maintain 1-month-old memory despite PKMζ turnover. Therefore, it is not PKMζ alone, nor KIBRA alone, but the continual interaction between the two that maintains late-LTP and long-term memory.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Potenciação de Longa Duração , Camundongos Knockout , Proteína Quinase C , Animais , Proteína Quinase C/metabolismo , Proteína Quinase C/genética , Camundongos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Memória/fisiologia , Memória de Longo Prazo/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Ligação Proteica , Fosfoproteínas
2.
Sci Signal ; 17(834): eadj6603, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687825

RESUMO

The localization, number, and function of postsynaptic AMPA-type glutamate receptors (AMPARs) are crucial for synaptic plasticity, a cellular correlate for learning and memory. The Hippo pathway member WWC1 is an important component of AMPAR-containing protein complexes. However, the availability of WWC1 is constrained by its interaction with the Hippo pathway kinases LATS1 and LATS2 (LATS1/2). Here, we explored the biochemical regulation of this interaction and found that it is pharmacologically targetable in vivo. In primary hippocampal neurons, phosphorylation of LATS1/2 by the upstream kinases MST1 and MST2 (MST1/2) enhanced the interaction between WWC1 and LATS1/2, which sequestered WWC1. Pharmacologically inhibiting MST1/2 in male mice and in human brain-derived organoids promoted the dissociation of WWC1 from LATS1/2, leading to an increase in WWC1 in AMPAR-containing complexes. MST1/2 inhibition enhanced synaptic transmission in mouse hippocampal brain slices and improved cognition in healthy male mice and in male mouse models of Alzheimer's disease and aging. Thus, compounds that disrupt the interaction between WWC1 and LATS1/2 might be explored for development as cognitive enhancers.


Assuntos
Hipocampo , Peptídeos e Proteínas de Sinalização Intracelular , Plasticidade Neuronal , Fosfoproteínas , Proteínas Serina-Treonina Quinases , Receptores de AMPA , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Masculino , Humanos , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Camundongos , Plasticidade Neuronal/fisiologia , Hipocampo/metabolismo , Via de Sinalização Hippo , Serina-Treonina Quinase 3 , Transdução de Sinais , Memória/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Fator de Crescimento de Hepatócito/metabolismo , Camundongos Endogâmicos C57BL , Doença de Alzheimer/metabolismo , Fosforilação , Neurônios/metabolismo
4.
FASEB J ; 37(5): e22912, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37086090

RESUMO

The family of WWC proteins is known to regulate cell proliferation and organ growth control via the Hippo signaling pathway. As WWC proteins share a similar domain structure and a common set of interacting proteins, they are supposed to fulfill compensatory functions in cells and tissues. While all three WWC family members WWC1, WWC2, and WWC3 are found co-expressed in most human organs including lung, brain, kidney, and liver, in the testis only WWC2 displays a relatively high expression. In this study, we investigated the testicular WWC2 expression in spermatogenesis and male fertility. We show that the Wwc2 mRNA expression level in mouse testes is increased during development in parallel with germ cell proliferation and differentiation. The cellular expression of each individual WWC family member was evaluated in published single-cell mRNA datasets of murine and human testes demonstrating a high WWC2 expression predominantly in early spermatocytes. In line with this, immunohistochemistry revealed cytosolic WWC2 protein expression in primary spermatocytes from human testes displaying full spermatogenesis. In accordance with these findings, markedly lower WWC2 expression levels were detected in testicular tissues from mice and men lacking germ cells. Finally, analysis of whole-exome sequencing data of male patients affected by infertility and unexplained severe spermatogenic failure revealed several heterozygous, rare WWC2 gene variants with a proposed damaging function and putative impact on WWC2 protein structure. Taken together, our findings provide novel insights into the testicular expression of WWC2 and show its cell-specific expression in spermatocytes. As rare WWC2 variants were identified in the background of disturbed spermatogenesis, WWC2 may be a novel candidate gene for male infertility.


Assuntos
Infertilidade Masculina , Espermatogênese , Testículo , Animais , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fertilidade/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatogênese/genética , Testículo/metabolismo
5.
J Mol Cell Biol ; 15(2)2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36806855

RESUMO

Tea domain transcription factor 4 (TEAD4) plays a pivotal role in tissue development and homeostasis by interacting with Yes-associated protein (YAP) in response to Hippo signaling inactivation. TEAD4 and YAP can also cooperate with transforming growth factor-ß (TGF-ß)-activated Smad proteins to regulate gene transcription. Yet, it remains unclear whether TEAD4 plays a YAP-independent role in TGF-ß signaling. Here, we unveil a novel tumor suppressive function of TEAD4 in liver cancer via mitigating TGF-ß signaling. Ectopic TEAD4 inhibited TGF-ß-induced signal transduction, Smad transcriptional activity, and target gene transcription, consequently suppressing hepatocellular carcinoma cell proliferation and migration in vitro and xenograft tumor growth in mice. Consistently, depletion of endogenous TEAD4 by siRNAs enhanced TGF-ß signaling in cancer cells. Mechanistically, TEAD4 associates with receptor-regulated Smads (Smad2/3) and Smad4 in the nucleus, thereby impairing the binding of Smad2/3 to the histone acetyltransferase p300. Intriguingly, these negative effects of TEAD4 on TGF-ß/Smad signaling are independent of YAP, as impairing the TEAD4-YAP interaction through point mutagenesis or depletion of YAP and/or its paralog TAZ has little effect. Together, these results unravel a novel function of TEAD4 in fine tuning TGF-ß signaling and liver cancer progression in a YAP-independent manner.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fatores de Transcrição de Domínio TEA , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Sinalização YAP
6.
Cell Rep ; 41(10): 111766, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476872

RESUMO

Learning and memory rely on changes in postsynaptic glutamergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type receptor (AMPAR) number, spatial organization, and function. The Hippo pathway component WW and C2 domain-containing protein 1 (WWC1) regulates AMPAR surface expression and impacts on memory performance. However, synaptic binding partners of WWC1 and its hierarchical position in AMPAR complexes are largely unclear. Using cell-surface proteomics in hippocampal tissue of Wwc1-deficient mice and by generating a hippocampus-specific interactome, we show that WWC1 is a major regulatory platform in AMPAR signaling networks. Under basal conditions, the Hippo pathway members WWC1 and large tumor-suppressor kinase (LATS) are associated, which might prevent WWC1 effects on synaptic proteins. Reduction of WWC1/LATS binding through a point mutation at WWC1 elevates the abundance of WWC1 in AMPAR complexes and improves hippocampal-dependent learning and memory. Thus, uncoupling of WWC1 from the Hippo pathway to AMPAR-regulatory complexes provides an innovative strategy to enhance synaptic transmission.


Assuntos
Proteômica , Receptores de AMPA , Animais , Camundongos
7.
Nat Commun ; 12(1): 3624, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131132

RESUMO

The LIM and SH3 domain protein 1 (Lasp1) was originally cloned from metastatic breast cancer and characterised as an adaptor molecule associated with tumourigenesis and cancer cell invasion. However, the regulation of Lasp1 and its function in the aggressive transformation of cells is unclear. Here we use integrative epigenomic profiling of invasive fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and from mouse models of the disease, to identify Lasp1 as an epigenomically co-modified region in chronic inflammatory arthritis and a functionally important binding partner of the Cadherin-11/ß-Catenin complex in zipper-like cell-to-cell contacts. In vitro, loss or blocking of Lasp1 alters pathological tissue formation, migratory behaviour and platelet-derived growth factor response of arthritic FLS. In arthritic human TNF transgenic mice, deletion of Lasp1 reduces arthritic joint destruction. Therefore, we show a function of Lasp1 in cellular junction formation and inflammatory tissue remodelling and identify Lasp1 as a potential target for treating inflammatory joint disorders associated with aggressive cellular transformation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Artrite/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Artrite/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Caderinas/metabolismo , Proteínas do Citoesqueleto/genética , Feminino , Proteínas de Homeodomínio , Proteínas com Domínio LIM/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos , beta Catenina/metabolismo
8.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070186

RESUMO

The WWC protein family is an upstream regulator of the Hippo signalling pathway that is involved in many cellular processes. We examined the effect of an endothelium-specific WWC1 and/or WWC2 knock-out on ocular angiogenesis. Knock-outs were induced in C57BL/6 mice at the age of one day (P1) and evaluated at P6 (postnatal mice) or induced at the age of five weeks and evaluated at three months of age (adult mice). We analysed morphology of retinal vasculature in retinal flat mounts. In addition, in vivo imaging and functional testing by electroretinography were performed in adult mice. Adult WWC1/2 double knock-out mice differed neither functionally nor morphologically from the control group. In contrast, the retinas of the postnatal WWC knock-out mice showed a hyperproliferative phenotype with significantly enlarged areas of sprouting angiogenesis and a higher number of tip cells. The branching and end points in the peripheral plexus were significantly increased compared to the control group. The deletion of the WWC2 gene was decisive for these effects; while knocking out WWC1 showed no significant differences. The results hint strongly that WWC2 is an essential regulator of ocular angiogenesis in mice. As an activator of the Hippo signalling pathway, it prevents excessive proliferation during physiological angiogenesis. In adult animals, WWC proteins do not seem to be important for the maintenance of the mature vascular plexus.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Neovascularização Retiniana/etiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Eletrorretinografia , Via de Sinalização Hippo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Neovascularização Retiniana/patologia , Neovascularização Retiniana/fisiopatologia , Vasos Retinianos/patologia , Vasos Retinianos/fisiopatologia , Transdução de Sinais , Proteínas de Sinalização YAP
9.
Exp Cell Res ; 403(2): 112613, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33901448

RESUMO

The Hippo signaling pathway is a tumor suppressor pathway that plays an important role in tissue homeostasis and organ size control. KIBRA is one of the many upstream regulators of the Hippo pathway. It functions as a tumor suppressor by positively regulating the core Hippo kinase cascade. However, there are accumulating shreds of evidence showing that KIBRA has an oncogenic function, which we speculate may arise from its functions away from the Hippo pathway. In this review, we have attempted to provide an overview of the Hippo signaling with a special emphasis on evidence showing the paradoxical role of KIBRA in cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Junções Aderentes/metabolismo , Junções Aderentes/ultraestrutura , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Adesões Focais/metabolismo , Adesões Focais/ultraestrutura , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Serina-Treonina Quinase 3 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
10.
Cancers (Basel) ; 13(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467643

RESUMO

The Hippo signaling pathway is known to regulate cell differentiation, proliferation and apoptosis. Whereas activation of the Hippo signaling pathway leads to phosphorylation and cytoplasmic retention of the transcriptional coactivator YAP, decreased Hippo signaling results in nuclear import of YAP and subsequent transcription of pro-proliferative genes. Hence, a dynamic and precise regulation of the Hippo signaling pathway is crucial for organ size control and the prevention of tumor formation. The transcriptional activity of YAP is controlled by a growing number of upstream regulators including the family of WWC proteins. WWC1, WWC2 and WWC3 represent cytosolic scaffolding proteins involved in intracellular transport processes and different signal transduction pathways. Earlier in vitro experiments demonstrated that WWC proteins positively regulate the Hippo pathway via the activation of large tumor suppressor kinases 1/2 (LATS1/2) kinases and the subsequent cytoplasmic accumulation of phosphorylated YAP. Later, reduced WWC expression and subsequent high YAP activity were shown to correlate with the progression of human cancer in different organs. Although the function of WWC proteins as upstream regulators of Hippo signaling was confirmed in various studies, their important role as tumor modulators is often overlooked. This review has been designed to provide an update on the published data linking WWC1, WWC2 and WWC3 to cancer, with a focus on Hippo pathway-dependent mechanisms.

11.
Cell Death Dis ; 12(1): 117, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483469

RESUMO

The WW-and-C2-domain-containing (WWC) protein family is involved in the regulation of cell differentiation, cell proliferation, and organ growth control. As upstream components of the Hippo signaling pathway, WWC proteins activate the Large tumor suppressor (LATS) kinase that in turn phosphorylates Yes-associated protein (YAP) and its paralog Transcriptional coactivator-with-PDZ-binding motif (TAZ) preventing their nuclear import and transcriptional activity. Inhibition of WWC expression leads to downregulation of the Hippo pathway, increased expression of YAP/TAZ target genes and enhanced organ growth. In mice, a ubiquitous Wwc1 knockout (KO) induces a mild neurological phenotype with no impact on embryogenesis or organ growth. In contrast, we could show here that ubiquitous deletion of Wwc2 in mice leads to early embryonic lethality. Wwc2 KO embryos display growth retardation, a disturbed placenta development, impaired vascularization, and finally embryonic death. A whole-transcriptome analysis of embryos lacking Wwc2 revealed a massive deregulation of gene expression with impact on cell fate determination, cell metabolism, and angiogenesis. Consequently, a perinatal, endothelial-specific Wwc2 KO in mice led to disturbed vessel formation and vascular hypersprouting in the retina. In summary, our data elucidate a novel role for Wwc2 as a key regulator in early embryonic development and sprouting angiogenesis in mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Desenvolvimento Embrionário/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Diferenciação Celular/fisiologia , Feminino , Via de Sinalização Hippo , Masculino , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/fisiologia , Transdução de Sinais
12.
FASEB J ; 34(4): 5453-5464, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086849

RESUMO

The foot processes of podocytes exhibit a dynamic actin cytoskeleton, which maintains their complex cell structure and antagonizes the elastic forces of the glomerular capillary. Interdigitating secondary foot processes form a highly selective filter for proteins in the kidney, the slit membrane. Knockdown of slit membrane components such as Nephrin or Neph1 and cytoskeletal adaptor proteins such as CD2AP in mice leads to breakdown of the filtration barrier with foot process effacement, proteinuria, and early death of the mice. Less is known about the crosstalk between the slit membrane-associated proteins and cytoskeletal components inside the podocyte foot processes. Our study shows that LASP-1, an actin-binding protein, is highly expressed in podocytes. Electron microscopy studies demonstrate that LASP-1 is found at the slit membrane suggesting a role in anchoring slit membrane components to the actin cytoskeleton. Live cell imaging experiments with transfected podocytes reveal that LASP-1 is either part of a highly dynamic granular complex or a static, actin cytoskeleton-bound protein. We identify CD2AP as a novel LASP-1 binding partner that regulates its association with the actin cytoskeleton. Activation of the renin-angiotensin-aldosterone system, which is crucial for podocyte function, leads to phosphorylation and altered localization of LASP-1. In vivo studies using the Drosophila nephrocyte model indicate that Lasp is necessary for the slit membrane integrity and functional filtration.


Assuntos
Citoesqueleto de Actina/fisiologia , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Rim/fisiologia , Proteínas dos Microfilamentos/metabolismo , Podócitos/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas dos Microfilamentos/genética , Fosforilação
13.
J Neurosci ; 40(3): 526-541, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31754010

RESUMO

Neuronal dendrites have specialized actin-rich structures called dendritic spines that receive and integrate most excitatory synaptic inputs. The stabilization of dendrites and spines during neuronal maturation is essential for proper neural circuit formation. Changes in dendritic morphology and stability are largely mediated by regulation of the actin cytoskeleton; however, the underlying mechanisms remain to be fully elucidated. Here, we present evidence that the nebulin family members LASP1 and LASP2 play an important role in the postsynaptic development of rat hippocampal neurons from both sexes. We find that both LASP1 and LASP2 are enriched in dendritic spines, and their knockdown impairs spine development and synapse formation. Furthermore, LASP2 exerts a distinct role in dendritic arbor and dendritic spine stabilization. Importantly, the actin-binding N-terminal LIM domain and nebulin repeats of LASP2 are required for spine stability and dendritic arbor complexity. These findings identify LASP1 and LASP2 as novel regulators of neuronal circuitry.SIGNIFICANCE STATEMENT Proper regulation of the actin cytoskeleton is essential for the structural stability of dendrites and dendritic spines. Consequently, the malformation of dendritic structures accompanies numerous neurologic disorders, such as schizophrenia and autism. Nebulin family members are best known for their role in regulating the stabilization and function of actin thin filaments in muscle. The two smallest family members, LASP1 and LASP2, are more structurally diverse and are expressed in a broader array of tissues. While both LASP1 and LASP2 are highly expressed in the brain, little is currently known about their function in the nervous system. In this study, we demonstrate the first evidence that LASP1 and LASP2 are involved in the formation and long-term maintenance of dendrites and dendritic spines.


Assuntos
Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/fisiologia , Domínios de Homologia de src/genética , Domínios de Homologia de src/fisiologia , Actinas/metabolismo , Animais , Dendritos/ultraestrutura , Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Potenciais Pós-Sinápticos Excitadores/genética , Técnicas de Silenciamento de Genes , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Rede Nervosa/citologia , Rede Nervosa/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos
14.
J Biol Chem ; 294(46): 17383-17394, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31597702

RESUMO

The second WW domain (WW2) of the kidney and brain scaffolding protein, KIBRA, has an isoleucine (Ile-81) rather than a second conserved tryptophan and is primarily unstructured. However, it adopts the canonical triple-stranded antiparallel ß-sheet structure of WW domains when bound to a two-PPXY motif peptide of the synaptic protein Dendrin. Here, using a series of biophysical experiments, we demonstrate that the WW2 domain remains largely disordered when bound to a 69-residue two-PPXY motif polypeptide of the synaptic and podocyte protein synaptopodin (SYNPO). Isothermal titration calorimetry and CD experiments revealed that the interactions of the disordered WW2 domain with SYNPO are significantly weaker than SYNPO's interactions with the well-folded WW1 domain and that an I81W substitution in the WW2 domain neither enhances binding affinity nor induces substantial WW2 domain folding. In the tandem polypeptide, the two WW domains synergized, enhancing the overall binding affinity with the I81W variant tandem polypeptide 2-fold compared with the WT polypeptide. Solution NMR results showed that SYNPO binding induces small but definite chemical shift perturbations in the WW2 domain, confirming the disordered state of the WW2 domain in this complex. These analyses also disclosed that SYNPO binds the tandem WW domain polypeptide in an antiparallel manner, that is, the WW1 domain binds the second PPXY motif of SYNPO. We propose a binding model consisting of a bipartite interaction mode in which the largely disordered WW2 forms a "fuzzy" complex with SYNPO. This binding mode may be important for specific cellular functions.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas dos Microfilamentos/química , Ligação Proteica/genética , Domínios WW/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos/genética , Aminoácidos/química , Aminoácidos/genética , Calorimetria , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isoleucina/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/ultraestrutura , Peptídeos/química , Peptídeos/genética , Dobramento de Proteína , Estrutura Terciária de Proteína
15.
Cancer Manag Res ; 11: 3395-3410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114375

RESUMO

Purpose: The expression of FERM-domain-containing protein-1 (FRMPD1)/FERM and PDZ domain-containing protein-2 (FRMD2) in malignant tumors, including lung cancer, and its underlying molecular mechanism have not been reported yet. Materials and methods: Immunohistochemistry was performed to analyze the expression of FRMPD1 in lung cancer tissues, and statistical analysis was applied to analyze the relationship between FRMPD1 expression and clinicopathological factors. The biological effects of FRMPD1 on lung cancer cell proliferation and invasion were determined by functional experiments both in vivo and in vitro. Immunoblotting, RT-qPCR, dual-luciferase assay, and immunofluorescence were performed to demonstrate whether FRMPD1 stimulates Hippo signaling. Co-immunoprecipitation assays were used to clarify the underlying role of FRMPD1 in Hippo pathway activation via interaction with WW and C2 domain containing protein-3 (WWC3). Results: We found that FRMPD1 expression in lung cancer specimens was lower than that in normal bronchial epithelium and normal submucosal glands. FRMPD1 expression had a negative correlation with age, Tumor-Node-Metastasis (TNM) stage, lymph node metastasis, as well as poor prognosis. Moreover, ectopic expression of FRMPD1 significantly inhibited the proliferation and invasion of lung cancer cells, and inhibition of FRMPD1 expression led to opposite effects. Mechanistically, we found that FRMPD1 interacted with the C-terminal PDZ binding motif of WWC3 via its PSD95/DLG/ZO1 (PDZ) domain and promoted the phosphorylation of large tumor suppressor-1 (LATS1), thus inhibiting the nuclear translocation of yes-associated protein (YAP). Conclusion: FRMPD1 could activate the Hippo pathway and ultimately inhibit the malignant behavior of lung cancer cells through its interaction with WWC3. This work will provide an important experimental basis for the discovery of novel biomarkers of lung cancer and the development of targeted drugs.

16.
FASEB J ; 33(1): 821-832, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052485

RESUMO

Reactivation of Notch signaling in kidneys of animal models and patients with chronic kidney disease (CKD) has been shown to contribute to epithelial injury and fibrosis development. Here, we investigated the mechanisms of Notch-induced injury in renal epithelial cells. We performed genome-wide transcriptome analysis to identify Notch target genes using an in vitro system of cultured tubular epithelial cells expressing the intracellular domain of Notch1. One of the top downregulated genes was Disabled-2 ( Dab2). With the use of Drosophila nephrocytes as a model system, we found that Dab (the Drosophila homolog of Dab2) knockdown resulted in a significant filtration defect, indicating that loss of Dab2 plays a functional role in kidney disease development. We showed that Dab2 expression in cultured tubular epithelial cells is involved in endocytic regulation and that it also protects cells from TGF-ß-induced epithelial-to-mesenchymal transition. In vivo correlation studies indicated its additional role in renal ischemia-induced injury. Together, these data suggest that Dab2 plays a versatile role in the kidney and may impact on acute and CKDs.-Schütte-Nütgen, K., Edeling, M., Mendl, G., Krahn, M. P., Edemir, B., Weide, T., Kremerskothen, J., Michgehl, U., Pavenstädt, H. Getting a Notch closer to renal dysfunction: activated Notch suppresses expression of the adaptor protein Disabled-2 in tubular epithelial cells.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Túbulos Renais/metabolismo , Rim/metabolismo , Receptores Notch/metabolismo , Insuficiência Renal Crônica/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Diferenciação Celular , Linhagem Celular , Regulação para Baixo , Endocitose , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Rim/fisiopatologia , Túbulos Renais/citologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
17.
Cell Death Dis ; 9(9): 850, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154411

RESUMO

Podocytes are crucial for the establishment of the blood-urine filtration barrier in the glomeruli of the kidney. These cells are mainly affected during glomerulopathies causing proteinuria and kidney function impairment. Ongoing podocyte injury leads to podocyte loss, finally followed by end-stage kidney disease. Podocytes display a predominant nuclear localization of YAP (Yes-associated protein), one effector protein of the Hippo pathway, which regulates the balance between proliferation, differentiation, and apoptosis in cells. Nuclear active YAP seems to be critical for podocyte survival in vivo and in vitro. We can show here that different treatments leading to sequestration of YAP into the cytoplasm in podocytes, like decreased rigidity of the substrate, incubation with dasatinib, or overexpression of Hippo pathway members result in the induction of apoptosis. A RNA sequencing analysis of large tumor suppressor kinase 2 (LATS2) overexpressing podocytes confirmed a significant upregulation of apoptotic genes. The downregulation of Hippo pathway components suggests a feedback mechanism in podocytes. Noteworthy was the regulation of genes involved in cell-cell junction, the composition of the extracellular space, and cell migration. This suggests an influence of Hippo pathway activity on podocyte integrity. As focal segmental glomerulopathy (FSGS) goes along with an activation of the Hippo pathway in podocytes, a comparison of our data with two independent studies of transcriptional regulation in human FSGS glomeruli obtained from the Nephroseq database was performed. This comparison affirmed a multitude of consistent transcriptional changes concerning the regulation of genes influencing apoptosis and the Hippo signaling pathway as well as cell junction formation and cell migration. The link between Hippo pathway activation in podocytes and the regulation of junction and migration processes in vivo might be a fundamental mechanism of glomerular sclerosis and loss of renal function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Fosfoproteínas/metabolismo , Podócitos/metabolismo , Transporte Proteico/fisiologia , Apoptose/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Rim/metabolismo , Insuficiência Renal/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição , Transcrição Gênica/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/fisiologia , Proteínas de Sinalização YAP
18.
Onco Targets Ther ; 11: 2581-2591, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780251

RESUMO

BACKGROUND: Though we recently reported that the WWC3 inhibits the invasiveness and metastasis of lung cancer by activating the Hippo pathway, the impact and underlying mechanisms of this process still remain unclear. METHODS: To identify the role of WWC3 in epithelial-mesenchymal transition of lung cancer, we performed immunohistochemistry to detect the expression levels of WWC3 and EMT-related biomarker, and analyzed their correlations in a cohort of 127 patients with NSCLC. Wound healing assay and cell invasion assay were applied to explore cell invasive ability change after WWC3 knockdown. qRT-PCR and immunoblotting were performed to assess mRNA and protein levels of EMT-related biomarkers and the main molecules changes of Hippo signaling caused by WWC3. Immunoprecipition was to examine WWC3 and LATS1 interaction. RESULTS: WWC3 knockdown drives a pronounced shift from the epithelial to the mesenchymal phenotype in lung cancer cells. In addition, WWC3 ectopic expression in lung cancer cells attenuates mesenchymal markers and increases the epithelial markers expressions; however, WWC3-ΔWW plasmid abrogated these effects. WWC3 silencing by shRNA exerts the opposite effect. Furthermore, WWC3 levels were inversely correlated with the levels of EMT inducers (Snail and Slug) in lung cancer cells and specimens. Immunoblotting revealed that WWC3 wild-type upregulates large tumor suppressor (LATS1) and yes-associated protein (YAP) phosphorylation through its WW domain, hence activating Hippo pathway. Knockdown of YAP and LATS1, as well as the as the Verteporfin (VP) usage, could reverse this effect caused by WWC3 silencing. CONCLUSION: These findings suggest that WWC3 works as a tumor suppressor to inhibit EMT process and confer its candidacy as a potential therapeutic target in lung cancer.

19.
J Biol Chem ; 293(24): 9335-9344, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29724824

RESUMO

Kidney- and brain-expressed protein (KIBRA), a multifunctional scaffold protein with around 20 known binding partners, is involved in memory and cognition, organ size control via the Hippo pathway, cell polarity, and membrane trafficking. KIBRA includes tandem N-terminal WW domains, a C2 domain, and motifs for binding atypical PKC and PDZ domains. A naturally occurring human KIBRA variant involving residue changes at positions 734 (Met-to-Ile) and 735 (Ser-to-Ala) within the C2 domain affects cognitive performance. We have elucidated 3D structures and calcium- and phosphoinositide-binding properties of human KIBRA C2 domain. Both WT and variant C2 adopt a canonical type I topology C2 domain fold. Neither Ca2+ nor any other metal ion was bound to WT or variant KIBRA C2 in crystal structures, and Ca2+ titration produced no significant reproducible changes in NMR spectra. NMR and X-ray diffraction data indicate that KIBRA C2 binds phosphoinositides via an atypical site involving ß-strands 5, 2, 1, and 8. Molecular dynamics simulations indicate that KIBRA C2 interacts with membranes via primary and secondary sites on the same domain face as the experimentally identified phosphoinositide-binding site. Our results indicate that KIBRA C2 domain association with membranes is calcium-independent and involves distinctive C2 domain-membrane relative orientations.


Assuntos
Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfatidilinositóis/metabolismo , Fosfoproteínas/metabolismo , Domínios C2 , Membrana Celular/metabolismo , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/genética , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Conformação Proteica
20.
Hepatology ; 67(4): 1546-1559, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29116649

RESUMO

The Hippo pathway regulates cell differentiation, proliferation, and apoptosis. Upon activation, it inhibits the import of the transcriptional coactivator yes-associated protein (YAP) into the nucleus, thus suppressing transcription of pro-proliferative genes. Hence, dynamic and precise control of the Hippo pathway is crucial for organ size control and the prevention of tumor formation. Hippo signaling is controlled by a growing number of upstream regulators, including WW and C2 domain-containing (WWC) proteins, which trigger a serine/threonine kinase pathway. One component of this is the large tumor suppressor (LATS) kinase, which phosphorylates YAP, trapping it in the cytoplasm. WWC proteins have been shown to interact with LATS in vitro and stimulate its kinase activity, thus directly promoting cytoplasmic accumulation of phosphorylated YAP. However, the function of the WWC proteins in the regulation of cell proliferation, organ size control, and tumor prevention in vivo has not yet been determined. Here, we show that loss of hepatic WWC expression in mice leads to tissue overgrowth, inflammation, fibrosis, and formation of liver carcinoma. WWC-deficient mouse livers display reduced LATS activity, increased YAP-mediated gene transcription, and enhanced proliferation of hepatic progenitor cells. In addition, loss of WWC expression in the liver accelerates the turnover of angiomotin proteins, which act as negative regulators of YAP activity. CONCLUSION: Our data define an essential in vivo function for WWC proteins as regulators of canonical and noncanonical Hippo signaling in hepatic cell growth and liver tumorigenesis. Thus, expression of WWC proteins may serve as novel prognostic factors in human liver carcinoma. (Hepatology 2018;67:1546-1559).


Assuntos
Carcinogênese/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Imunofluorescência , Técnicas de Genotipagem , Via de Sinalização Hippo , Imuno-Histoquímica , Hibridização In Situ , Fígado/patologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA