Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(16): 163602, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925717

RESUMO

We describe a mechanism for guiding the dynamical evolution of ultracold atomic motional degrees of freedom toward multiparticle entangled Dicke-squeezed states, via nonlinear self-organization under external driving. Two examples of many-body models are investigated. In the first model, the external drive is a temporally oscillating magnetic field leading to self-organization by interatomic scattering. In the second model, the drive is a pump laser leading to transverse self-organization by photon-atom scattering in a ring cavity. We numerically demonstrate the generation of multiparticle entangled states of atomic motion and discuss prospective experimental realizations of the models. For the cavity case, the calculations with adiabatically eliminated photonic sidebands show significant momentum entanglement generation can occur even in the "bad cavity" regime. The results highlight the potential for using self-organization of atomic motion in quantum technological applications.

2.
Phys Rev Lett ; 128(18): 183901, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35594088

RESUMO

Coordinate transformations are a versatile tool to mold the flow of light, enabling a host of astonishing phenomena such as optical cloaking with metamaterials. Moving away from the usual restriction that links isotropic materials with conformal transformations, we show how nonconformal distortions of optical space are intimately connected to the complex refractive index distribution of an isotropic non-Hermitian medium. Remarkably, this insight can be used to circumvent the material requirement of working with refractive indices below unity, which limits the applications of transformation optics. We apply our approach to design a broadband unidirectional dielectric cloak, which relies on nonconformal coordinate transformations to tailor the non-Hermitian refractive index profile around a cloaked object. Our insights bridge the fields of two-dimensional transformation optics and non-Hermitian photonics.

3.
Sci Adv ; 8(21): eabl7412, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35613272

RESUMO

Light propagation is strongly affected by scattering due to imperfections in the complex medium. It has been recently theoretically predicted that a scattering-free transport through an inhomogeneous medium is achievable by non-Hermitian tailoring of the complex refractive index. Here, we implement photonic constant-intensity waves in an inhomogeneous, linear, discrete mesh lattice. By extending the existing theoretical framework, we experimentally show that a driven non-Hermitian tailoring allows us to control the propagation and diffraction of light even in highly disordered systems. In this vein, we demonstrate the transmission of shape-preserving beams and the seemingly undistorted propagation of light excitations across a strongly inhomogeneous non-Hermitian photonic lattice that can be realized by coupled optical fiber loops. Our results lead to a deeper understanding of non-Hermitian wave control and further contribute to the development of non-Hermitian photonics.

4.
Phys Rev Lett ; 117(7): 073002, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563957

RESUMO

Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence, where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or "single-photon superradiance," has been investigated much more recently, and superradiant decay has also been predicted, even for a spherical sample of large extent and low density, where the distance between atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-scattering effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA