Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Data Brief ; 25: 104101, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31294058

RESUMO

The ICLabel dataset is comprised of training and test sets of a set of spatiotemporal features of electroencephalographic (EEG) independent components (IC). The ICLabel training set feature sets were computed for over 200,000 EEG ICs from more than 6,000 existing EEG recordings. More than 8,000 of these ICs have accompanying crowdsourced IC labels across seven IC categories: Brain, Muscle, Eye, Heart, Line Nosie, Channel Noise, and Other. The feature-sets included in the ICLabel dataset are scalp topography images, channel-based scalp topography measures, power spectral densities (PSD) measures (median, variance and kurtosis) and autocorrelation functions, equivalent current dipole (ECD) model fits for single and bilaterally symmetric dipole models, plus features used in several published IC classifier approaches. The ICLabel test set is comprised of 130 ICs from 10 datasets not included in the training set. Each of the test set ICs has an associated IC label estimated based on labels provided by six ICA-EEG experts. Files necessary for adding to and amending the dataset are also included, plus a python class containing useful methods for interacting with the dataset, and IC classifications produced by several existing IC classifiers. These data are linked to the article, "ICLabel: An automated electroencephalographic independent component classifier, dataset, and website" [1]. An active tutorial and crowdsourcing website is available: iclabel.ucsd.edu/tutorial/overview.

2.
Neuroimage ; 198: 181-197, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31103785

RESUMO

The electroencephalogram (EEG) provides a non-invasive, minimally restrictive, and relatively low-cost measure of mesoscale brain dynamics with high temporal resolution. Although signals recorded in parallel by multiple, near-adjacent EEG scalp electrode channels are highly-correlated and combine signals from many different sources, biological and non-biological, independent component analysis (ICA) has been shown to isolate the various source generator processes underlying those recordings. Independent components (IC) found by ICA decomposition can be manually inspected, selected, and interpreted, but doing so requires both time and practice as ICs have no order or intrinsic interpretations and therefore require further study of their properties. Alternatively, sufficiently-accurate automated IC classifiers can be used to classify ICs into broad source categories, speeding the analysis of EEG studies with many subjects and enabling the use of ICA decomposition in near-real-time applications. While many such classifiers have been proposed recently, this work presents the ICLabel project comprised of (1) the ICLabel dataset containing spatiotemporal measures for over 200,000 ICs from more than 6000 EEG recordings and matching component labels for over 6000 of those ICs, all using common average reference, (2) the ICLabel website for collecting crowdsourced IC labels and educating EEG researchers and practitioners about IC interpretation, and (3) the automated ICLabel classifier, freely available for MATLAB. The ICLabel classifier improves upon existing methods in two ways: by improving the accuracy of the computed label estimates and by enhancing its computational efficiency. The classifier outperforms or performs comparably to the previous best publicly available automated IC component classification method for all measured IC categories while computing those labels ten times faster than that classifier as shown by a systematic comparison against other publicly available EEG IC classifiers.


Assuntos
Algoritmos , Encéfalo/fisiologia , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Artefatos , Interpretação Estatística de Dados , Bases de Dados Factuais , Humanos , Software
3.
Neuroimage ; 185: 361-378, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30342235

RESUMO

Here we demonstrate the suitability of a local mutual information measure for estimating the temporal dynamics of cross-frequency coupling (CFC) in brain electrophysiological signals. In CFC, concurrent activity streams in different frequency ranges interact and transiently couple. A particular form of CFC, phase-amplitude coupling (PAC), has raised interest given the growing amount of evidence of its possible role in healthy and pathological brain information processing. Although several methods have been proposed for PAC estimation, only a few have addressed the estimation of the temporal evolution of PAC, and these typically require a large number of experimental trials to return a reliable estimate. Here we explore the use of mutual information to estimate a PAC measure (MIPAC) in both continuous and event-related multi-trial data. To validate these two applications of the proposed method, we first apply it to a set of simulated phase-amplitude modulated signals and show that MIPAC can successfully recover the temporal dynamics of the simulated coupling in either continuous or multi-trial data. Finally, to explore the use of MIPAC to analyze data from human event-related paradigms, we apply it to an actual event-related human electrocorticographic (ECoG) data set that exhibits strong PAC, demonstrating that the MIPAC estimator can be used to successfully characterize amplitude-modulation dynamics in electrophysiological data.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Teoria da Informação , Modelos Neurológicos , Processamento de Sinais Assistido por Computador , Simulação por Computador , Eletrocorticografia , Humanos
4.
Knowl Inf Syst ; 53(3): 749-765, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30416242

RESUMO

Large, unlabeled datasets are abundant nowadays, but getting labels for those datasets can be expensive and time-consuming. Crowd labeling is a crowdsourcing approach for gathering such labels from workers whose suggestions are not always accurate. While a variety of algorithms exist for this purpose, we present crowd labeling latent Dirichlet allocation (CL-LDA), a generalization of latent Dirichlet allocation that can solve a more general set of crowd labeling problems. We show that it performs as well as other methods and at times better on a variety of simulated and actual datasets while treating each label as compositional rather than indicating a discrete class. In addition, prior knowledge of workers' abilities can be incorporated into the model through a structured Bayesian framework. We then apply CL-LDA to the EEG independent component labeling dataset, using its generalizations to further explore the utility of the algorithm. We discuss prospects for creating classifiers from the generated labels.

5.
Artigo em Inglês | MEDLINE | ID: mdl-24111068

RESUMO

Independent component analysis (ICA) can find distinct sources of electroencephalographic (EEG) activity, both brain-based and artifactual, and has become a common pre-preprocessing step in analysis of EEG data. Distinction between brain and non-brain independent components (ICs) accounting for, e.g., eye or muscle activities is an important step in the analysis. Here we present a fully automated method to identify eye-movement related EEG components by analyzing the spatial distribution of their scalp projections (scalp maps). The EyeCatch method compares each input scalp map to a database of eye-related IC scalp maps obtained by data-mining over half a million IC scalp maps obtained from 80,006 EEG datasets associated with a diverse set of EEG studies and paradigms. To our knowledge this is the largest sample of IC scalp maps that has ever been analyzed. Our result show comparable performance to a previous state-of-art semi-automated method, CORRMAP, while eliminating the need for human intervention.


Assuntos
Mineração de Dados , Eletroencefalografia/instrumentação , Movimentos Oculares/fisiologia , Artefatos , Automação , Encéfalo/fisiologia , Bases de Dados como Assunto , Humanos , Couro Cabeludo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA