Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 15(7): e0236575, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32722713

RESUMO

Diadromous fishes have drastically declined over the last century, especially in Europe. Several authors have highlighted the role of large dams in this decline, but in fact, its causes are potentially multiple and cumulative, including degradation of local environmental conditions and widespread fragmentation of hydrographic networks associated with the pervasive establishment of smaller barriers. Consequently, there is a need to improve the identification and prioritization of the drivers of diadromous species loss in order to identify and apply the most appropriate conservation and restoration measures. In this study, we used both historical sources (from mid-18th to early 20th century) and current data to quantify the long-term loss of diadromous taxa over 555 sites throughout the French river network. Then, we modeled the effects of several anthropogenic pressures (e.g. barriers, water quality, hydrological and river morphological alterations) on diadromous taxon loss. Lastly, we assessed the potential consequences of four different scenarios of anthropogenic pressure reduction. Due to uncertainties in historical sources, some species were grouped into taxa leading to a potential underestimation of actual species extinctions. Despite this limitation, our results showed that the decline in diadromous assemblages is widespread but with contrasting magnitudes depending on site locations. The maximum height and density of barriers appeared as the major factors of taxon loss. Over the scenarios tested, we observed that exclusively improving local conditions have much more limited effects than restoring river continuity. Focusing actions on large dam removal did not show the strongest responses compared to removing medium and small-sized barriers. For effective and sustainable restoration of diadromous fish assemblage, (1) historical occurrences of diadromous fishes should be used as an indicator for assessing recovery, and (2) undertaken measures must be adapted to each basin to target and limit the number of barriers to remove while allowing diadromous fish recovery.


Assuntos
Migração Animal , Monitoramento Ambiental , Peixes , Modelos Estatísticos , Rios , Animais , Biodiversidade , Peixes/classificação , Atividades Humanas , Hidrologia , Dinâmica Populacional , Qualidade da Água
2.
Sci Total Environ ; 734: 139467, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32470662

RESUMO

In the context of increasing pressure on water bodies, many fish-based indices have been developed to evaluate the ecological status of rivers. However, most of these indices suffer from several limitations, which hamper the capacity of water managers to select the most appropriate measures of restoration. Those limitations include: (i) being dependent on reference conditions, (ii) not satisfactorily handling complex and non-linear biological responses to pressure gradients, and (iii) being unable to identify specific risks of stream degradation in a multi-pressure context. To tackle those issues, we developed a diagnosis-based approach using Random Forest models to predict the impairment probabilities of river fish communities by 28 pressure categories (chemical, hydromorphological and biological). In addition, the database includes the abundances of 72 fish species collected from 1527 sites in France, sampled between 2005 and 2015; and fish taxonomic and biological information. Twenty random forest models provided at least good performances when evaluating impairment probabilities of fish communities by those pressures. The best performing models indicated that fish communities were impacted, on average, by 7.34 ±â€¯0.03 abiotic pressure categories (mean ±â€¯SE), and that hydromorphological alterations (5.27 ±â€¯0.02) were more often detected than chemical ones (2.06 ±â€¯0.02). These models showed that alterations in longitudinal continuity, and contaminations by Polycyclic Aromatic Hydrocarbons were respectively the most frequent hydromorphological and chemical pressure categories in French rivers. This approach has also efficiently detected the functional impact of invasive alien species. Identifying and ranking the impacts of multiple anthropogenic pressures that trigger functional shifts in river biological communities is essential for managers to prioritize actions and to implement appropriate restoration programmes. Actually implemented in an R package, this approach has the capacity to detect a variety of impairments, resulting in an efficient assessment of ecological risks across various spatial and temporal scales.


Assuntos
Peixes , Rios , Animais , Ecossistema , Monitoramento Ambiental , França
3.
Water Res ; 115: 60-73, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28259815

RESUMO

Physical habitat degradation is prevalent in river ecosystems. Although still little is known about the ecological consequences of altered hydromorphology, understanding the factors at play can contribute to sustainable environmental management. In this study we aimed to identify the hydromorphological features controlling a key ecosystem function and the spatial scales where such linkages operate. As hydromorphological and chemical pressures often occur in parallel, we examined the relative importance of hydromorphological and chemical factors as determinants of leaf breakdown. Leaf breakdown assays were investigated at 82 sites of rivers throughout the French territory. Leaf breakdown data were then crossed with data on water quality and with a multi-scale hydromorphological assessment (i.e. upstream catchment, river segment, reach and habitat) when quantitative data were available. Microbial and total leaf breakdown rates exhibited differential responses to both hydromorphological and chemical alterations. Relationships between the chemical quality of the water and leaf breakdown were weak, while hydromorphological integrity explained independently up to 84.2% of leaf breakdown. Hydrological and morphological parameters were the main predictors of microbial leaf breakdown, whereas hydrological parameters had a major effect on total leaf breakdown, particularly at large scales, while morphological parameters were important at smaller scales. Microbial leaf breakdown were best predicted by hydromorphological features defined at the upstream catchment level whereas total leaf breakdown were best predicted by reach and habitat level geomorphic variables. This study demonstrates the use of leaf breakdown in a biomonitoring context and the importance of hydromorphological integrity for the functioning of running water. It provides new insights for environmental decision-makers to identify the management and restoration actions that have to be undertaken including the hydromorphogical features that should be kept in minimal maintenance to support leaf breakdown.


Assuntos
Ecossistema , Rios , Ecologia , Monitoramento Ambiental , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA