Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Comput Neurosci ; 18: 1414462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933392

RESUMO

Parkinson's disease (PD) is a globally significant health challenge, necessitating accurate and timely diagnostic methods to facilitate effective treatment and intervention. In recent years, self-supervised deep representation pattern learning (SS-DRPL) has emerged as a promising approach for extracting valuable representations from data, offering the potential to enhance the efficiency of voice-based PD detection. This research study focuses on investigating the utilization of SS-DRPL in conjunction with deep learning algorithms for voice-based PD classification. This study encompasses a comprehensive evaluation aimed at assessing the accuracy of various predictive models, particularly deep learning methods when combined with SS-DRPL. Two deep learning architectures, namely hybrid Long Short-Term Memory and Recurrent Neural Networks (LSTM-RNN) and Deep Neural Networks (DNN), are employed and compared in terms of their ability to detect voice-based PD cases accurately. Additionally, several traditional machine learning models are also included to establish a baseline for comparison. The findings of the study reveal that the incorporation of SS-DRPL leads to improved model performance across all experimental setups. Notably, the LSTM-RNN architecture augmented with SS-DRPL achieves the highest F1-score of 0.94, indicating its superior ability to detect PD cases using voice-based data effectively. This outcome underscores the efficacy of SS-DRPL in enabling deep learning models to learn intricate patterns and correlations within the data, thereby facilitating more accurate PD classification.

2.
Diagnostics (Basel) ; 14(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38893700

RESUMO

Tuberculosis (TB) is an infectious disease caused by Mycobacterium. It primarily impacts the lungs but can also endanger other organs, such as the renal system, spine, and brain. When an infected individual sneezes, coughs, or speaks, the virus can spread through the air, which contributes to its high contagiousness. The goal is to enhance detection recognition with an X-ray image dataset. This paper proposed a novel approach, named the Tuberculosis Segmentation-Guided Diagnosis Model (TSSG-CNN) for Detecting Tuberculosis, using a combined semantic segmentation and adaptive convolutional neural network (CNN) architecture. The proposed approach is distinguished from most of the previously proposed approaches in that it uses the combination of a deep learning segmentation model with a follow-up classification model based on CNN layers to segment chest X-ray images more precisely as well as to improve the diagnosis of TB. It contrasts with other approaches like ILCM, which is optimized for sequential learning, and explainable AI approaches, which focus on explanations. Moreover, our model is beneficial for the simplified procedure of feature optimization from the perspectives of approach using the Mayfly Algorithm (MA). Other models, including simple CNN, Batch Normalized CNN (BN-CNN), and Dense CNN (DCNN), are also evaluated on this dataset to evaluate the effectiveness of the proposed approach. The performance of the TSSG-CNN model outperformed all the models with an impressive accuracy of 98.75% and an F1 score of 98.70%. The evaluation findings demonstrate how well the deep learning segmentation model works and the potential for further research. The results suggest that this is the most accurate strategy and highlight the potential of the TSSG-CNN Model as a useful technique for precise and early diagnosis of TB.

3.
Sensors (Basel) ; 23(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37960449

RESUMO

This research paper investigates the integration of blockchain technology to enhance the security of Android mobile app data storage. Blockchain holds the potential to significantly improve data security and reliability, yet faces notable challenges such as scalability, performance, cost, and complexity. In this study, we begin by providing a thorough review of prior research and identifying critical research gaps in the field. Android's dominant position in the mobile market justifies our focus on this platform. Additionally, we delve into the historical evolution of blockchain and its relevance to modern mobile app security in a dedicated section. Our examination of encryption techniques and the effectiveness of blockchain in securing mobile app data storage yields important insights. We discuss the advantages of blockchain over traditional encryption methods and their practical implications. The central contribution of this paper is the Blockchain-based Secure Android Data Storage (BSADS) framework, now consisting of six comprehensive layers. We address challenges related to data storage costs, scalability, performance, and mobile-specific constraints, proposing technical optimization strategies to overcome these obstacles effectively. To maintain transparency and provide a holistic perspective, we acknowledge the limitations of our study. Furthermore, we outline future directions, stressing the importance of leveraging lightweight nodes, tackling scalability issues, integrating emerging technologies, and enhancing user experiences while adhering to regulatory requirements.

4.
Sensors (Basel) ; 23(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514716

RESUMO

The detection of weld defects by using X-rays is an important task in the industry. It requires trained specialists with the expertise to conduct a timely inspection, which is costly and cumbersome. Moreover, the process can be erroneous due to fatigue and lack of concentration. In this context, this study proposes an automated approach to identify multi-class welding defects by processing the X-ray images. It is realized by an intelligent hybridization of the data augmentation techniques and convolutional neural network (CNN). The proposed data augmentation mainly performs random rotation, shearing, zooming, brightness adjustment, and horizontal flips on the intended images. This augmentation is beneficial for the realization of a generalized trained CNN model, which can process the multi-class dataset for the identification of welding defects. The effectiveness of the proposed method is confirmed by testing its performance in processing an industrial dataset. The intended dataset contains 4479 X-ray images and belongs to six groups: cavity, cracks, inclusion slag, lack of fusion, shape defects, and normal defects. The devised technique achieved an average accuracy of 92%. This indicates that the approach is promising and can be used in contemporary solutions for the automated detection and categorization of welding defects.

5.
Sensors (Basel) ; 23(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050640

RESUMO

Advances in semiconductor technology and wireless sensor networks have permitted the development of automated inspection at diverse scales (machine, human, infrastructure, environment, etc.). However, automated identification of road cracks is still in its early stages. This is largely owing to the difficulty obtaining pavement photographs and the tiny size of flaws (cracks). The existence of pavement cracks and potholes reduces the value of the infrastructure, thus the severity of the fracture must be estimated. Annually, operators in many nations must audit thousands of kilometers of road to locate this degradation. This procedure is costly, sluggish, and produces fairly subjective results. The goal of this work is to create an efficient automated system for crack identification, extraction, and 3D reconstruction. The creation of crack-free roads is critical to preventing traffic deaths and saving lives. The proposed method consists of five major stages: detection of flaws after processing the input picture with the Gaussian filter, contrast adjustment, and ultimately, threshold-based segmentation. We created a database of road cracks to assess the efficacy of our proposed method. The result obtained are commendable and outperform previous state-of-the-art studies.

6.
Sensors (Basel) ; 22(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36502187

RESUMO

River floods are listed among the natural disasters that can directly influence different aspects of life, ranging from human lives, to economy, infrastructure, agriculture, etc. Organizations are investing heavily in research to find more efficient approaches to prevent them. The Artificial Intelligence of Things (AIoT) is a recent concept that combines the best of both Artificial Intelligence and Internet of Things, and has already demonstrated its capabilities in different fields. In this paper, we introduce an AIoT architecture where river flood sensors, in each region, can transmit their data via the LoRaWAN to their closest local broadcast center. The latter will relay the collected data via 4G/5G to a centralized cloud server that will analyze the data, predict the status of the rivers countrywide using an efficient Artificial Intelligence approach, and thus, help prevent eventual floods. This approach has proven its efficiency at every level. On the one hand, the LoRaWAN-based communication between sensor nodes and broadcast centers has provided a lower energy consumption and a wider range. On the other hand, the Artificial Intelligence-based data analysis has provided better river flood predictions.


Assuntos
Inteligência Artificial , Desastres , Humanos , Desastres/prevenção & controle , Inundações/prevenção & controle , Rios , Ambiente Controlado
7.
Sensors (Basel) ; 22(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36236573

RESUMO

Academics and the health community are paying much attention to developing smart remote patient monitoring, sensors, and healthcare technology. For the analysis of medical scans, various studies integrate sophisticated deep learning strategies. A smart monitoring system is needed as a proactive diagnostic solution that may be employed in an epidemiological scenario such as COVID-19. Consequently, this work offers an intelligent medicare system that is an IoT-empowered, deep learning-based decision support system (DSS) for the automated detection and categorization of infectious diseases (COVID-19 and pneumothorax). The proposed DSS system was evaluated using three independent standard-based chest X-ray scans. The suggested DSS predictor has been used to identify and classify areas on whole X-ray scans with abnormalities thought to be attributable to COVID-19, reaching an identification and classification accuracy rate of 89.58% for normal images and 89.13% for COVID-19 and pneumothorax. With the suggested DSS system, a judgment depending on individual chest X-ray scans may be made in approximately 0.01 s. As a result, the DSS system described in this study can forecast at a pace of 95 frames per second (FPS) for both models, which is near to real-time.


Assuntos
COVID-19 , Pneumotórax , Idoso , COVID-19/diagnóstico por imagem , Teste para COVID-19 , Humanos , Pulmão , Medicare , Estados Unidos , Raios X
8.
Comput Intell Neurosci ; 2022: 3998193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958771

RESUMO

It has been noted that disease detection approaches based on deep learning are becoming increasingly important in artificial intelligence-based research in the field of agriculture. Studies conducted in this area are not at the level that is desirable due to the diversity of plant species and the regional characteristics of many of these species. Although numerous researchers have studied diseases on plant leaves, it is undeniable that timely diagnosis of diseases on olive leaves remains a difficult task. It is estimated that people have been cultivating olive trees for 6000 years, making it one of the most useful and profitable fruit trees in history. Symptoms that appear on infected leaves can vary from one plant to another or even between individual leaves on the same plant. Because olive groves are susceptible to a variety of pathogens, including bacterial blight, olive knot, Aculus olearius, and olive peacock spot, it has been difficult to develop an effective olive disease detection algorithm. For this reason, we developed a unique deep ensemble learning strategy that combines the convolutional neural network model with vision transformer model. The goal of this method is to detect and classify diseases that can affect olive leaves. In addition, binary and multiclassification systems based on deep convolutional models were used to categorize olive leaf disease. The results are encouraging and show how effectively CNN and vision transformer models can be used together. Our model outperformed the other models with an accuracy of about 96% for multiclass classification and 97% for binary classification, as shown by the experimental results reported in this study.


Assuntos
Olea , Inteligência Artificial , Frutas , Humanos , Redes Neurais de Computação , Olea/microbiologia , Folhas de Planta
9.
Sensors (Basel) ; 22(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890953

RESUMO

Blockchain is a modern technology that has revolutionized the way society interacts and trades. It could be defined as a chain of blocks that stores information with digital signatures in a distributed and decentralized network. This technique was first adopted for the creation of digital cryptocurrencies, such as Bitcoin and Ethereum. However, research and industrial studies have recently focused on the opportunities that blockchain provides in various other application domains to take advantage of the main features of this technology, such as: decentralization, persistency, anonymity, and auditability. This paper reviews the use of blockchain in several interesting fields, namely: finance, healthcare, information systems, wireless networks, Internet of Things, smart grids, governmental services, and military/defense. In addition, our paper identifies the challenges to overcome, to guarantee better use of this technology.


Assuntos
Blockchain , Atenção à Saúde/métodos , Sistemas de Informação , Tecnologia
10.
J Healthc Eng ; 2022: 8950243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494520

RESUMO

Computer science plays an important role in modern dynamic health systems. Given the collaborative nature of the diagnostic process, computer technology provides important services to healthcare professionals and organizations, as well as to patients and their families, researchers, and decision-makers. Thus, any innovations that improve the diagnostic process while maintaining quality and safety are crucial to the development of the healthcare field. Many diseases can be tentatively diagnosed during their initial stages. In this study, all developed techniques were applied to tuberculosis (TB). Thus, we propose an optimized machine learning-based model that extracts optimal texture features from TB-related images and selects the hyper-parameters of the classifiers. Increasing the accuracy rate and minimizing the number of characteristics extracted are our goals. In other words, this is a multitask optimization issue. A genetic algorithm (GA) is used to choose the best features, which are then fed into a support vector machine (SVM) classifier. Using the ImageCLEF 2020 data set, we conducted experiments using the proposed approach and achieved significantly higher accuracy and better outcomes in comparison with the state-of-the-art works. The obtained experimental results highlight the efficiency of modified SVM classifier compared with other standard ones.


Assuntos
Aprendizado de Máquina , Tuberculose , Humanos , Máquina de Vetores de Suporte , Tuberculose/diagnóstico
11.
Sensors (Basel) ; 22(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458846

RESUMO

The roots of Wireless Sensor Networks (WSNs) are tracked back to US military developments, and, currently, WSNs have paved their way into a vast domain of civil applications, especially environmental, critical infrastructure, habitat monitoring, etc. In the majority of these applications, WSNs have been deployed to monitor critical and inaccessible terrains; however, due to their unique and resource-constrained nature, WSNs face many design and deployment challenges in these difficult-to-access working environments, including connectivity maintenance, topology management, reliability, etc. However, for WSNs, topology management and connectivity still remain a major concern in WSNs that hampers their operations, with a direct impact on the overall application performance of WSNs. To address this issue, in this paper, we propose a new topology management and connectivity maintenance scheme called a Tolerating Fault and Maintaining Network Connectivity using Array Antenna (ToMaCAA) for WSNs. ToMaCAA is a system designed to adapt to dynamic structures and maintain network connectivity while consuming fewer network resources. Thereafter, we incorporated a Phase Array Antenna into the existing topology management technologies, proving ToMaCAA to be a novel contribution. This new approach allows a node to connect to the farthest node in the network while conserving resources and energy. Moreover, data transmission is restricted to one route, reducing overheads and conserving energy in various other nodes' idle listening state. For the implementation of ToMaCAA, the MATLAB network simulation platform has been used to test and analyse its performance. The output results were compared with the benchmark schemes, i.e., Disjoint Path Vector (DPV), Adaptive Disjoint Path Vector (ADPV), and Pickup Non-Critical Node Based k-Connectivity (PINC). The performance of ToMaCAA was evaluated based on different performance metrics, i.e., the network lifetime, total number of transmitted messages, and node failure in WSNs. The output results revealed that the ToMaCAA outperformed the DPV, ADPV, and PINC schemes in terms of maintaining network connectivity during link failures and made the network more fault-tolerant and reliable.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos , Simulação por Computador , Reprodutibilidade dos Testes
12.
Artigo em Inglês | MEDLINE | ID: mdl-33921223

RESUMO

Experts have predicted that COVID-19 may prevail for many months or even years before it can be completely eliminated. A major problem in its cure is its early screening and detection, which will decide on its treatment. Due to the fast contactless spreading of the virus, its screening is unusually difficult. Moreover, the results of COVID-19 tests may take up to 48 h. That is enough time for the virus to worsen the health of the affected person. The health community needs effective means for identification of the virus in the shortest possible time. In this study, we invent a medical device utilized consisting of composable sensors to monitor remotely and in real-time the health status of those who have symptoms of the coronavirus or those infected with it. The device comprises wearable medical sensors integrated using the Arduino hardware interfacing and a smartphone application. An IoT framework is deployed at the backend through which various devices can communicate in real-time. The medical device is applied to determine the patient's critical status of the effects of the coronavirus or its symptoms using heartbeat, cough, temperature and Oxygen concentration (SpO2) that are evaluated using our custom algorithm. Until now, it has been found that many coronavirus patients remain asymptomatic, but in case of known symptoms, a person can be quickly identified with our device. It also allows doctors to examine their patients without the need for physical direct contact with them to reduce the possibility of infection. Our solution uses rule-based decision-making based on the physiological data of a person obtained through sensors. These rules allow to classify a person as healthy or having a possibility of infection by the coronavirus. The advantage of using rules for patient's classification is that the rules can be updated as new findings emerge from time to time. In this article, we explain the details of the sensors, the smartphone application, and the associated IoT framework for real-time, remote screening of COVID-19.


Assuntos
COVID-19 , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica , SARS-CoV-2
13.
Sensors (Basel) ; 21(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671583

RESUMO

The usage of wearable gadgets is growing in the cloud-based health monitoring systems. The signal compression, computational and power efficiencies play an imperative part in this scenario. In this context, we propose an efficient method for the diagnosis of cardiovascular diseases based on electrocardiogram (ECG) signals. The method combines multirate processing, wavelet decomposition and frequency content-based subband coefficient selection and machine learning techniques. Multirate processing and features selection is used to reduce the amount of information processed thus reducing the computational complexity of the proposed system relative to the equivalent fixed-rate solutions. Frequency content-dependent subband coefficient selection enhances the compression gain and reduces the transmission activity and computational cost of the post cloud-based classification. We have used MIT-BIH dataset for our experiments. To avoid overfitting and biasness, the performance of considered classifiers is studied by using five-fold cross validation (5CV) and a novel proposed partial blind protocol. The designed method achieves more than 12-fold computational gain while assuring an appropriate signal reconstruction. The compression gain is 13 times compared to fixed-rate counterparts and the highest classification accuracies are 97.06% and 92.08% for the 5CV and partial blind cases, respectively. Results suggest the feasibility of detecting cardiac arrhythmias using the proposed approach.


Assuntos
Arritmias Cardíacas , Compressão de Dados , Processamento de Sinais Assistido por Computador , Algoritmos , Arritmias Cardíacas/diagnóstico , Eletrocardiografia , Humanos , Aprendizado de Máquina
14.
J Big Data ; 7(1): 76, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32953386

RESUMO

Big graphs are part of the movement of "Not Only SQL" databases (also called NoSQL) focusing on the relationships between data, rather than the values themselves. The data is stored in vertices while the edges model the interactions or relationships between these data. They offer flexibility in handling data that is strongly connected to each other. The analysis of a big graph generally involves exploring all of its vertices. Thus, this operation is costly in time and resources because big graphs are generally composed of millions of vertices connected through billions of edges. Consequently, the graph algorithms are expansive compared to the size of the big graph, and are therefore ineffective for data exploration. Thus, partitioning the graph stands out as an efficient and less expensive alternative for exploring a big graph. This technique consists in partitioning the graph into a set of k sub-graphs in order to reduce the complexity of the queries. Nevertheless, it presents many challenges because it is an NP-complete problem. In this article, we present DPHV (Distributed Placement of Hub-Vertices) an efficient parallel and distributed heuristic for large-scale graph partitioning. An application on a real-world graphs demonstrates the feasibility and reliability of our method. The experiments carried on a 10-nodes Spark cluster proved that the proposed methodology achieves significant gain in term of time and outperforms JA-BE-JA, Greedy, DFEP.

15.
Sensors (Basel) ; 20(14)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679671

RESUMO

The concept of smart cities has become prominent in modern metropolises due to the emergence of embedded and connected smart devices, systems, and technologies. They have enabled the connection of every "thing" to the Internet. Therefore, in the upcoming era of the Internet of Things, the Internet of Vehicles (IoV) will play a crucial role in newly developed smart cities. The IoV has the potential to solve various traffic and road safety problems effectively in order to prevent fatal crashes. However, a particular challenge in the IoV, especially in Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications, is to ensure fast, secure transmission and accurate recording of the data. In order to overcome these challenges, this work is adapting Blockchain technology for real time application (RTA) to solve Vehicle-to-Everything (V2X) communications problems. Therefore, the main novelty of this paper is to develop a Blockchain-based IoT system in order to establish secure communication and create an entirely decentralized cloud computing platform. Moreover, the authors qualitatively tested the performance and resilience of the proposed system against common security attacks. Computational tests showed that the proposed solution solved the main challenges of Vehicle-to-X (V2X) communications such as security, centralization, and lack of privacy. In addition, it guaranteed an easy data exchange between different actors of intelligent transportation systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA