Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Mol Psychiatry ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256549

RESUMO

Depression is a multifactorial clinical syndrome with a low pharmacological treatment response rate. Therefore, identifying predictors of treatment response capable of providing the basis for future developments of individualized therapies is crucial. Here, we applied model-free and model-based measures of whole-brain turbulent dynamics in resting-state functional magnetic resonance imaging (fMRI) in healthy controls and unmedicated depressed patients. After eight weeks of treatment with selective serotonin reuptake inhibitors (SSRIs), patients were classified as responders and non-responders according to the Hamilton Depression Rating Scale 6 (HAMD6). Using the model-free approach, we found that compared to healthy controls and responder patients, non-responder patients presented disruption of the information transmission across spacetime scales. Furthermore, our results revealed that baseline turbulence level is positively correlated with beneficial pharmacological treatment outcomes. Importantly, our model-free approach enabled prediction of which patients would turn out to be non-responders. Finally, our model-based approach provides mechanistic evidence that non-responder patients are less sensitive to stimulation and, consequently, less prone to respond to treatment. Overall, we demonstrated that different levels of turbulent dynamics are suitable for predicting response to SSRIs treatment in depression.

2.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39110413

RESUMO

Music is a non-verbal human language, built on logical, hierarchical structures, that offers excellent opportunities to explore how the brain processes complex spatiotemporal auditory sequences. Using the high temporal resolution of magnetoencephalography, we investigated the unfolding brain dynamics of 70 participants during the recognition of previously memorized musical sequences compared to novel sequences matched in terms of entropy and information content. Measures of both whole-brain activity and functional connectivity revealed a widespread brain network underlying the recognition of the memorized auditory sequences, which comprised primary auditory cortex, superior temporal gyrus, insula, frontal operculum, cingulate gyrus, orbitofrontal cortex, basal ganglia, thalamus, and hippocampus. Furthermore, while the auditory cortex responded mainly to the first tones of the sequences, the activity of higher-order brain areas such as the cingulate gyrus, frontal operculum, hippocampus, and orbitofrontal cortex largely increased over time during the recognition of the memorized versus novel musical sequences. In conclusion, using a wide range of analytical techniques spanning from decoding to functional connectivity and building on previous works, our study provided new insights into the spatiotemporal whole-brain mechanisms for conscious recognition of auditory sequences.


Assuntos
Percepção Auditiva , Encéfalo , Magnetoencefalografia , Música , Humanos , Masculino , Feminino , Adulto , Magnetoencefalografia/métodos , Percepção Auditiva/fisiologia , Adulto Jovem , Encéfalo/fisiologia , Reconhecimento Psicológico/fisiologia , Mapeamento Encefálico/métodos , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Estimulação Acústica/métodos
3.
Commun Biol ; 7(1): 1036, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209979

RESUMO

Aging is often associated with decline in brain processing power and neural predictive capabilities. To challenge this notion, we used magnetoencephalography (MEG) and magnetic resonance imaging (MRI) to record the whole-brain activity of 39 older adults (over 60 years old) and 37 young adults (aged 18-25 years) during recognition of previously memorised and varied musical sequences. Results reveal that when recognising memorised sequences, the brain of older compared to young adults reshapes its functional organisation. In fact, it shows increased early activity in sensory regions such as the left auditory cortex (100 ms and 250 ms after each note), and only moderate decreased activity (350 ms) in medial temporal lobe and prefrontal regions. When processing the varied sequences, older adults show a marked reduction of the fast-scale functionality (250 ms after each note) of higher-order brain regions including hippocampus, ventromedial prefrontal and inferior temporal cortices, while no differences are observed in the auditory cortex. Accordingly, young outperform older adults in the recognition of novel sequences, while no behavioural differences are observed with regards to memorised ones. Our findings show age-related neural changes in predictive and memory processes, integrating existing theories on compensatory neural mechanisms in non-pathological aging.


Assuntos
Envelhecimento , Imageamento por Ressonância Magnética , Magnetoencefalografia , Música , Humanos , Adulto , Masculino , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Envelhecimento/fisiologia , Idoso , Adolescente , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Córtex Auditivo/fisiologia , Córtex Auditivo/diagnóstico por imagem , Reconhecimento Psicológico/fisiologia , Mapeamento Encefálico/métodos
4.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853985

RESUMO

Exploring the intricate relationship between brain's structure and function, and how this affects subjective experience is a fundamental pursuit in neuroscience. Psychedelic substances offer a unique insight into the influences of specific neurotransmitter systems on perception, cognition and consciousness. Specifically, their impact on brain function propagates across the structural connectome - a network of white matter pathways linking different regions. To comprehensively grasp the effects of psychedelic compounds on brain function, we used a theoretically rigorous framework known as connectome harmonic decomposition. This framework provides a robust method to characterize how brain function intricately depends on the organized network structure of the human connectome. We show that the connectome harmonic repertoire under DMT is reshaped in line with other reported psychedelic compounds - psilocybin, LSD and ketamine. Furthermore, we show that the repertoire entropy of connectome harmonics increases under DMT, as with those other psychedelics. Importantly, we demonstrate for the first time that measures of energy spectrum difference and repertoire entropy of connectome harmonics indexes the intensity of subjective experience of the participants in a time-resolved manner reflecting close coupling between connectome harmonics and subjective experience.

5.
Neuropsychologia ; 199: 108905, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38740179

RESUMO

Linguistic research showed that the depth of syntactic embedding is reflected in brain theta power. Here, we test whether this also extends to non-linguistic stimuli, specifically music. We used a hierarchical model of musical syntax to continuously quantify two types of expert-annotated harmonic dependencies throughout a piece of Western classical music: prolongation and preparation. Prolongations can roughly be understood as a musical analogue to linguistic coordination between constituents that share the same function (e.g., 'pizza' and 'pasta' in 'I ate pizza and pasta'). Preparation refers to the dependency between two harmonies whereby the first implies a resolution towards the second (e.g., dominant towards tonic; similar to how the adjective implies the presence of a noun in 'I like spicy … '). Source reconstructed MEG data of sixty-five participants listening to the musical piece was then analysed. We used Bayesian Mixed Effects models to predict theta envelope in the brain, using the number of open prolongation and preparation dependencies as predictors whilst controlling for audio envelope. We observed that prolongation and preparation both carry independent and distinguishable predictive value for theta band fluctuation in key linguistic areas such as the Angular, Superior Temporal, and Heschl's Gyri, or their right-lateralised homologues, with preparation showing additional predictive value for areas associated with the reward system and prediction. Musical expertise further mediated these effects in language-related brain areas. Results show that predictions of precisely formalised music-theoretical models are reflected in the brain activity of listeners which furthers our understanding of the perception and cognition of musical structure.


Assuntos
Percepção Auditiva , Magnetoencefalografia , Música , Ritmo Teta , Humanos , Ritmo Teta/fisiologia , Masculino , Feminino , Percepção Auditiva/fisiologia , Adulto , Adulto Jovem , Estimulação Acústica , Teorema de Bayes , Encéfalo/fisiologia
7.
PLoS Comput Biol ; 20(5): e1011350, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701063

RESUMO

A fundamental challenge in neuroscience is accurately defining brain states and predicting how and where to perturb the brain to force a transition. Here, we investigated resting-state fMRI data of patients suffering from disorders of consciousness (DoC) after coma (minimally conscious and unresponsive wakefulness states) and healthy controls. We applied model-free and model-based approaches to help elucidate the underlying brain mechanisms of patients with DoC. The model-free approach allowed us to characterize brain states in DoC and healthy controls as a probabilistic metastable substate (PMS) space. The PMS of each group was defined by a repertoire of unique patterns (i.e., metastable substates) with different probabilities of occurrence. In the model-based approach, we adjusted the PMS of each DoC group to a causal whole-brain model. This allowed us to explore optimal strategies for promoting transitions by applying off-line in silico probing. Furthermore, this approach enabled us to evaluate the impact of local perturbations in terms of their global effects and sensitivity to stimulation, which is a model-based biomarker providing a deeper understanding of the mechanisms underlying DoC. Our results show that transitions were obtained in a synchronous protocol, in which the somatomotor network, thalamus, precuneus and insula were the most sensitive areas to perturbation. This motivates further work to continue understanding brain function and treatments of disorders of consciousness.


Assuntos
Encéfalo , Simulação por Computador , Transtornos da Consciência , Imageamento por Ressonância Magnética , Modelos Neurológicos , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Transtornos da Consciência/fisiopatologia , Transtornos da Consciência/diagnóstico por imagem , Masculino , Feminino , Biologia Computacional , Adulto , Pessoa de Meia-Idade , Estado de Consciência/fisiologia , Mapeamento Encefálico/métodos , Idoso
8.
Natl Sci Rev ; 11(5): nwae124, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778818

RESUMO

The human brain is a complex system, whose activity exhibits flexible and continuous reorganization across space and time. The decomposition of whole-brain recordings into harmonic modes has revealed a repertoire of gradient-like activity patterns associated with distinct brain functions. However, the way these activity patterns are expressed over time with their changes in various brain states remains unclear. Here, we investigate healthy participants taking the serotonergic psychedelic N,N-dimethyltryptamine (DMT) with the Harmonic Decomposition of Spacetime (HADES) framework that can characterize how different harmonic modes defined in space are expressed over time. HADES demonstrates significant decreases in contributions across most low-frequency harmonic modes in the DMT-induced brain state. When normalizing the contributions by condition (DMT and non-DMT), we detect a decrease specifically in the second functional harmonic, which represents the uni- to transmodal functional hierarchy of the brain, supporting the leading hypothesis that functional hierarchy is changed in psychedelics. Moreover, HADES' dynamic spacetime measures of fractional occupancy, life time and latent space provide a precise description of the significant changes of the spacetime hierarchical organization of brain activity in the psychedelic state.

9.
Alzheimers Res Ther ; 16(1): 79, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605416

RESUMO

BACKGROUND: The hypothesis of decreased neural inhibition in dementia has been sparsely studied in functional magnetic resonance imaging (fMRI) data across patients with different dementia subtypes, and the role of social and demographic heterogeneities on this hypothesis remains to be addressed. METHODS: We inferred regional inhibition by fitting a biophysical whole-brain model (dynamic mean field model with realistic inter-areal connectivity) to fMRI data from 414 participants, including patients with Alzheimer's disease, behavioral variant frontotemporal dementia, and controls. We then investigated the effect of disease condition, and demographic and clinical variables on the local inhibitory feedback, a variable related to the maintenance of balanced neural excitation/inhibition. RESULTS: Decreased local inhibitory feedback was inferred from the biophysical modeling results in dementia patients, specific to brain areas presenting neurodegeneration. This loss of local inhibition correlated positively with years with disease, and showed differences regarding the gender and geographical origin of the patients. The model correctly reproduced known disease-related changes in functional connectivity. CONCLUSIONS: Results suggest a critical link between abnormal neural and circuit-level excitability levels, the loss of grey matter observed in dementia, and the reorganization of functional connectivity, while highlighting the sensitivity of the underlying biophysical mechanism to demographic and clinical heterogeneities in the patient population.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Encéfalo/patologia , Imageamento por Ressonância Magnética , Substância Cinzenta/patologia , Demência Frontotemporal/patologia , Doença de Alzheimer/patologia , Inibição Neural
10.
Neuron ; 112(9): 1392-1396, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608705

RESUMO

"Supporting human flourishing" is a goal of governments and societies, yet the construct may appear hard to define. We discuss the emerging science of pleasure and flourishing, insights into the brain mechanisms of meaning making and thriving, and the potential for interdisciplinary studies to advance this promising scientific field.


Assuntos
Encéfalo , Prazer , Humanos , Prazer/fisiologia , Encéfalo/fisiologia
11.
Trends Cogn Sci ; 28(6): 568-581, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677884

RESUMO

To not only survive, but also thrive, the brain must efficiently orchestrate distributed computation across space and time. This requires hierarchical organisation facilitating fast information transfer and processing at the lowest possible metabolic cost. Quantifying brain hierarchy is difficult but can be estimated from the asymmetry of information flow. Thermodynamics has successfully characterised hierarchy in many other complex systems. Here, we propose the 'Thermodynamics of Mind' framework as a natural way to quantify hierarchical brain orchestration and its underlying mechanisms. This has already provided novel insights into the orchestration of hierarchy in brain states including movie watching, where the hierarchy of the brain is flatter than during rest. Overall, this framework holds great promise for revealing the orchestration of cognition.


Assuntos
Encéfalo , Termodinâmica , Humanos , Encéfalo/fisiologia , Cognição/fisiologia
12.
Netw Neurosci ; 8(1): 158-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562284

RESUMO

It has been previously shown that traumatic brain injury (TBI) is associated with reductions in metastability in large-scale networks in resting-state fMRI (rsfMRI). However, little is known about how TBI affects the local level of synchronization and how this evolves during the recovery trajectory. Here, we applied a novel turbulent dynamics framework to investigate whole-brain dynamics using an rsfMRI dataset from a cohort of moderate to severe TBI patients and healthy controls (HCs). We first examined how several measures related to turbulent dynamics differ between HCs and TBI patients at 3, 6, and 12 months post-injury. We found a significant reduction in these empirical measures after TBI, with the largest change at 6 months post-injury. Next, we built a Hopf whole-brain model with coupled oscillators and conducted in silico perturbations to investigate the mechanistic principles underlying the reduced turbulent dynamics found in the empirical data. A simulated attack was used to account for the effect of focal lesions. This revealed a shift to lower coupling parameters in the TBI dataset and, critically, decreased susceptibility and information-encoding capability. These findings confirm the potential of the turbulent framework to characterize longitudinal changes in whole-brain dynamics and in the reactivity to external perturbations after TBI.

13.
Front Neuroinform ; 18: 1382372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590709

RESUMO

Traumatic Brain Injury (TBI) is a prevalent disorder mostly characterized by persistent impairments in cognitive function that poses a substantial burden on caregivers and the healthcare system worldwide. Crucially, severity classification is primarily based on clinical evaluations, which are non-specific and poorly predictive of long-term disability. In this Mini Review, we first provide a description of our model-free and model-based approaches within the turbulent dynamics framework as well as our vision on how they can potentially contribute to provide new neuroimaging biomarkers for TBI. In addition, we report the main findings of our recent study examining longitudinal changes in moderate-severe TBI (msTBI) patients during a one year spontaneous recovery by applying the turbulent dynamics framework (model-free approach) and the Hopf whole-brain computational model (model-based approach) combined with in silico perturbations. Given the neuroinflammatory response and heightened risk for neurodegeneration after TBI, we also offer future directions to explore the association with genomic information. Moreover, we discuss how whole-brain computational modeling may advance our understanding of the impact of structural disconnection on whole-brain dynamics after msTBI in light of our recent findings. Lastly, we suggest future avenues whereby whole-brain computational modeling may assist the identification of optimal brain targets for deep brain stimulation to promote TBI recovery.

14.
Brain Commun ; 6(2): fcae049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515439

RESUMO

Psilocybin therapy for depression has started to show promise, yet the underlying causal mechanisms are not currently known. Here, we leveraged the differential outcome in responders and non-responders to psilocybin (10 and 25 mg, 7 days apart) therapy for depression-to gain new insights into regions and networks implicated in the restoration of healthy brain dynamics. We used large-scale brain modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-responders before treatment. Dynamic sensitivity analysis of systematic perturbation of these models enabled us to identify specific brain regions implicated in a transition from a depressive brain state to a healthy one. Binarizing the sample into treatment responders (>50% reduction in depressive symptoms) versus non-responders enabled us to identify a subset of regions implicated in this change. Interestingly, these regions correlate with in vivo density maps of serotonin receptors 5-hydroxytryptamine 2a and 5-hydroxytryptamine 1a, which psilocin, the active metabolite of psilocybin, has an appreciable affinity for, and where it acts as a full-to-partial agonist. Serotonergic transmission has long been associated with depression, and our findings provide causal mechanistic evidence for the role of brain regions in the recovery from depression via psilocybin.

15.
Adv Sci (Weinh) ; 11(21): e2308364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489748

RESUMO

Adolescence is a timed process with an onset, tempo, and duration. Nevertheless, the temporal dimension, especially the pace of maturation, remains an insufficiently studied aspect of developmental progression. The primary objective is to estimate the precise influence of pubertal maturational tempo on the configuration of associative brain regions. To this end, the connection between maturational stages and the level of hierarchical organization of large-scale brain networks in 12-13-year-old females is analyzed. Skeletal maturity is used as a proxy for pubertal progress. The degree of maturity is defined by the difference between bone age and chronological age. To assess the level of hierarchical organization in the brain, the temporal dynamic of closed eye resting state high-density electroencephalography (EEG) in the alpha frequency range is analyzed. Different levels of hierarchical order are captured by the measured asymmetry in the directionality of information flow between different regions. The calculated EEG-based entropy production of participant groups is then compared with accelerated, average, and decelerated maturity. Results indicate that an average maturational trajectory optimally aligns with cerebral hierarchical order, and both accelerated and decelerated timelines result in diminished cortical organization. This suggests that a "Goldilocks rule" of brain development is favoring a particular maturational tempo.


Assuntos
Encéfalo , Eletroencefalografia , Puberdade , Humanos , Feminino , Eletroencefalografia/métodos , Adolescente , Criança , Encéfalo/fisiologia , Encéfalo/crescimento & desenvolvimento , Puberdade/fisiologia
16.
Trends Cogn Sci ; 28(4): 319-338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246816

RESUMO

Despite significant improvements in our understanding of brain diseases, many barriers remain. Cognitive neuroscience faces four major challenges: complex structure-function associations; disease phenotype heterogeneity; the lack of transdiagnostic models; and oversimplified cognitive approaches restricted to the laboratory. Here, we propose a synergetics framework that can help to perform the necessary dimensionality reduction of complex interactions between the brain, body, and environment. The key solutions include low-dimensional spatiotemporal hierarchies for brain-structure associations, whole-brain modeling to handle phenotype diversity, model integration of shared transdiagnostic pathophysiological pathways, and naturalistic frameworks balancing experimental control and ecological validity. Creating whole-brain models with reduced manifolds combined with ecological measures can improve our understanding of brain disease and help identify novel interventions. Synergetics provides an integrated framework for future progress in clinical and cognitive neuroscience, pushing the boundaries of brain health and disease toward more mature, naturalistic approaches.


Assuntos
Encefalopatias , Neurociência Cognitiva , Humanos , Encéfalo/fisiologia
17.
ACS Chem Neurosci ; 15(3): 462-471, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38214686

RESUMO

Recent findings have shown that psychedelics reliably enhance brain entropy (understood as neural signal diversity), and this effect has been associated with both acute and long-term psychological outcomes, such as personality changes. These findings are particularly intriguing, given that a decrease of brain entropy is a robust indicator of loss of consciousness (e.g., from wakefulness to sleep). However, little is known about how context impacts the entropy-enhancing effect of psychedelics, which carries important implications for how it can be exploited in, for example, psychedelic psychotherapy. This article investigates how brain entropy is modulated by stimulus manipulation during a psychedelic experience by studying participants under the effects of lysergic acid diethylamide (LSD) or placebo, either with gross state changes (eyes closed vs open) or different stimuli (no stimulus vs music vs video). Results show that while brain entropy increases with LSD under all of the experimental conditions, it exhibits the largest changes when subjects have their eyes closed. Furthermore, brain entropy changes are consistently associated with subjective ratings of the psychedelic experience, but this relationship is disrupted when participants are viewing a video─potentially due to a "competition" between external stimuli and endogenous LSD-induced imagery. Taken together, our findings provide strong quantitative evidence of the role of context in modulating neural dynamics during a psychedelic experience, underlining the importance of performing psychedelic psychotherapy in a suitable environment.


Assuntos
Alucinógenos , Humanos , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico , Encéfalo , Mapeamento Encefálico , Psicoterapia
18.
Ann N Y Acad Sci ; 1531(1): 12-28, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983198

RESUMO

Music and psychedelics have been intertwined throughout the existence of Homo sapiens, from the early shamanic rituals of the Americas and Africa to the modern use of psychedelic-assisted therapy for a variety of mental health conditions. Across such settings, music has been highly prized for its ability to guide the psychedelic experience. Here, we examine the interplay between music and psychedelics, starting by describing their association with the brain's functional hierarchy that is relied upon for music perception and its psychedelic-induced manipulation, as well as an exploration of the limited research on their mechanistic neural overlap. We explore music's role in Western psychedelic therapy and the use of music in indigenous psychedelic rituals, with a specific focus on ayahuasca and the Santo Daime Church. Furthermore, we explore work relating to the evolution and onset of music and psychedelic use. Finally, we consider music's potential to lead to altered states of consciousness in the absence of psychedelics as well as the development of psychedelic music. Here, we provide an overview of several perspectives on the interaction between psychedelic use and music-a topic with growing interest given increasing excitement relating to the therapeutic efficacy of psychedelic interventions.


Assuntos
Alucinógenos , Transtornos Mentais , Música , Humanos , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Psilocibina/farmacologia , Psilocibina/uso terapêutico
19.
Stress ; 27(1): 2275207, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877207

RESUMO

Maternal prenatal distress (PD), frequently defined as in utero prenatal stress exposure (PSE) to the developing fetus, influences the developing brain and numerous associations between PSE and brain structure have been described both in neonates and in older children. Previous studies addressing PSE-linked alterations in neonates' brain activity have focused on connectivity analyses from predefined seed regions, but the effects of PSE at the level of distributed functional networks remains unclear. In this study, we investigated the impact of prenatal distress on the spatial and temporal properties of functional networks detected in functional MRI data from 20 naturally sleeping, term-born (age 25.85 ± 7.72 days, 11 males), healthy neonates. First, we performed group level independent component analysis (GICA) to evaluate an association between PD and the identified functional networks. Second, we searched for an association with PD at the level of the stability of functional networks over time using leading eigenvector dynamics analysis (LEiDA). No statistically significant associations were detected at the spatial level for the GICA-derived networks. However, at the dynamic level, LEiDA revealed that maternal PD negatively associated with the stability of a frontoparietal network. These results imply that maternal PD may influence the stability of frontoparietal connections in neonatal brain network dynamics and adds to the cumulating evidence that frontal areas are especially sensitive to PSE. We advocate for early preventive intervention strategies regarding pregnant mothers. Nevertheless, future research venues are required to assess optimal intervention timing and methods for maximum benefit.


Assuntos
Encéfalo , Estresse Psicológico , Masculino , Recém-Nascido , Gravidez , Feminino , Criança , Humanos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Mães
20.
Netw Neurosci ; 7(3): 966-998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781151

RESUMO

A promising idea in human cognitive neuroscience is that the default mode network (DMN) is responsible for coordinating the recruitment and scheduling of networks for computing and solving task-specific cognitive problems. This is supported by evidence showing that the physical and functional distance of DMN regions is maximally removed from sensorimotor regions containing environment-driven neural activity directly linked to perception and action, which would allow the DMN to orchestrate complex cognition from the top of the hierarchy. However, discovering the functional hierarchy of brain dynamics requires finding the best way to measure interactions between brain regions. In contrast to previous methods measuring the hierarchical flow of information using, for example, transfer entropy, here we used a thermodynamics-inspired, deep learning based Temporal Evolution NETwork (TENET) framework to assess the asymmetry in the flow of events, 'arrow of time', in human brain signals. This provides an alternative way of quantifying hierarchy, given that the arrow of time measures the directionality of information flow that leads to a breaking of the balance of the underlying hierarchy. In turn, the arrow of time is a measure of nonreversibility and thus nonequilibrium in brain dynamics. When applied to large-scale Human Connectome Project (HCP) neuroimaging data from close to a thousand participants, the TENET framework suggests that the DMN plays a significant role in orchestrating the hierarchy, that is, levels of nonreversibility, which changes between the resting state and when performing seven different cognitive tasks. Furthermore, this quantification of the hierarchy of the resting state is significantly different in health compared to neuropsychiatric disorders. Overall, the present thermodynamics-based machine-learning framework provides vital new insights into the fundamental tenets of brain dynamics for orchestrating the interactions between cognition and brain in complex environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA