Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
medRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38559092

RESUMO

Numerous studies have underscored the diagnostic and therapeutic potential of exome or genome sequencing in critically ill pediatric populations. However, an equivalent investigation in critically ill adults remains conspicuously absent. We retrospectively analyzed whole exome sequencing (WES) data available through the PennMedicine Biobank (PMBB) from all 365 young adult patients, aged 18-40 years, with intensive care unit (ICU) admissions at the University of Pennsylvania Health System who met inclusion criteria for our study. For each participant, two Medical Genetics and Internal Medicine-trained clinicians reviewed WES reports and patient charts for variant classification, result interpretation, and identification of genetic diagnoses related to their critical illness. Of the 365 individuals in our study, 90 (24.7%) were found to have clearly diagnostic results on WES; an additional 40 (11.0%) had a suspicious variant of uncertain significance (VUS) identified; and an additional 16 (4.4%) had a medically actionable incidental finding. The diagnostic rate of exome sequencing did not decrease with increasing patient age. Affected genes were primarily involved in cardiac function (18.8%), vascular health (16.7%), cancer (16.7%), and pulmonary disease (11.5%). Only half of all diagnostic findings were known and documented in the patient chart at the time of ICU admission. Significant disparities emerged in subgroup analysis by EHR-reported race, with genetic diagnoses known/documented for 63.5% of White patients at the time of ICU admission but only for 28.6% of Black or Hispanic patients. There was a trend towards patients with undocumented genetic diagnoses having a 66% increased mortality rate, making these race-based disparities in genetic diagnosis even more concerning. Altogether, universal exome sequencing in ICU-admitted adult patients was found to yield a new definitive diagnosis in 11.2% of patients. Of these diagnoses, 76.6% conferred specific care-altering medical management recommendations. Our study suggests that the diagnostic utility of exome sequencing in critically ill young adults is similar to that observed in neonatal and pediatric populations and is age-independent. The high diagnostic rate and striking race-based disparities we find in genetic diagnoses argue for broad and universal approaches to genetic testing for critically ill adults. The widespread implementation of comprehensive genetic sequencing in the adult population promises to enhance medical care for all individuals and holds the potential to rectify disparities in genetic testing referrals, ultimately promoting more equitable healthcare delivery.

2.
Sci Rep ; 14(1): 53, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167550

RESUMO

The objective of this study is to define CT imaging derived phenotypes for patients with hepatic steatosis, a common metabolic liver condition, and determine its association with patient data from a medical biobank. There is a need to further characterize hepatic steatosis in lean patients, as its epidemiology may differ from that in overweight patients. A deep learning method determined the spleen-hepatic attenuation difference (SHAD) in Hounsfield Units (HU) on abdominal CT scans as a quantitative measure of hepatic steatosis. The patient cohort was stratified by BMI with a threshold of 25 kg/m2 and hepatic steatosis with threshold SHAD ≥ - 1 HU or liver mean attenuation ≤ 40 HU. Patient characteristics, diagnoses, and laboratory results representing metabolism and liver function were investigated. A phenome-wide association study (PheWAS) was performed for the statistical interaction between SHAD and the binary characteristic LEAN. The cohort contained 8914 patients-lean patients with (N = 278, 3.1%) and without (N = 1867, 20.9%) steatosis, and overweight patients with (N = 1863, 20.9%) and without (N = 4906, 55.0%) steatosis. Among all lean patients, those with steatosis had increased rates of cardiovascular disease (41.7 vs 27.8%), hypertension (86.7 vs 49.8%), and type 2 diabetes mellitus (29.1 vs 15.7%) (all p < 0.0001). Ten phenotypes were significant in the PheWAS, including chronic kidney disease, renal failure, and cardiovascular disease. Hepatic steatosis was found to be associated with cardiovascular, kidney, and metabolic conditions, separate from overweight BMI.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Hepatopatia Gordurosa não Alcoólica , Humanos , Doenças Cardiovasculares/complicações , Sobrepeso/complicações , Sobrepeso/diagnóstico por imagem , Diabetes Mellitus Tipo 2/complicações , Fígado Gorduroso/complicações , Tomografia Computadorizada por Raios X/métodos , Fenótipo , Hepatopatia Gordurosa não Alcoólica/complicações
3.
Pac Symp Biocomput ; 29: 611-626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160310

RESUMO

Polygenic risk scores (PRS) have predominantly been derived from genome-wide association studies (GWAS) conducted in European ancestry (EUR) individuals. In this study, we present an in-depth evaluation of PRS based on multi-ancestry GWAS for five cardiometabolic phenotypes in the Penn Medicine BioBank (PMBB) followed by a phenome-wide association study (PheWAS). We examine the PRS performance across all individuals and separately in African ancestry (AFR) and EUR ancestry groups. For AFR individuals, PRS derived using the multi-ancestry LD panel showed a higher effect size for four out of five PRSs (DBP, SBP, T2D, and BMI) than those derived from the AFR LD panel. In contrast, for EUR individuals, the multi-ancestry LD panel PRS demonstrated a higher effect size for two out of five PRSs (SBP and T2D) compared to the EUR LD panel. These findings underscore the potential benefits of utilizing a multi-ancestry LD panel for PRS derivation in diverse genetic backgrounds and demonstrate overall robustness in all individuals. Our results also revealed significant associations between PRS and various phenotypic categories. For instance, CAD PRS was linked with 18 phenotypes in AFR and 82 in EUR, while T2D PRS correlated with 84 phenotypes in AFR and 78 in EUR. Notably, associations like hyperlipidemia, renal failure, atrial fibrillation, coronary atherosclerosis, obesity, and hypertension were observed across different PRSs in both AFR and EUR groups, with varying effect sizes and significance levels. However, in AFR individuals, the strength and number of PRS associations with other phenotypes were generally reduced compared to EUR individuals. Our study underscores the need for future research to prioritize 1) conducting GWAS in diverse ancestry groups and 2) creating a cosmopolitan PRS methodology that is universally applicable across all genetic backgrounds. Such advances will foster a more equitable and personalized approach to precision medicine.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Humanos , Estratificação de Risco Genético , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , Medicina de Precisão , Herança Multifatorial , Biologia Computacional , Fenótipo , Hipertensão/genética , Diabetes Mellitus Tipo 2/genética , Fatores de Risco
4.
J Pers Med ; 12(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36556195

RESUMO

The Penn Medicine BioBank (PMBB) is an electronic health record (EHR)-linked biobank at the University of Pennsylvania (Penn Medicine). A large variety of health-related information, ranging from diagnosis codes to laboratory measurements, imaging data and lifestyle information, is integrated with genomic and biomarker data in the PMBB to facilitate discoveries and translational science. To date, 174,712 participants have been enrolled into the PMBB, including approximately 30% of participants of non-European ancestry, making it one of the most diverse medical biobanks. There is a median of seven years of longitudinal data in the EHR available on participants, who also consent to permission to recontact. Herein, we describe the operations and infrastructure of the PMBB, summarize the phenotypic architecture of the enrolled participants, and use body mass index (BMI) as a proof-of-concept quantitative phenotype for PheWAS, LabWAS, and GWAS. The major representation of African-American participants in the PMBB addresses the essential need to expand the diversity in genetic and translational research. There is a critical need for a "medical biobank consortium" to facilitate replication, increase power for rare phenotypes and variants, and promote harmonized collaboration to optimize the potential for biological discovery and precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA